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16.1 Introduction

The four Cluster spacecraft will enable simultaneous measurements of the vector mag-

netic field at the vertices of a tetrahedron. Methods for analysing such data include: a

contour integral method for determining the electric current density (from ∇ ×B) in fields

varying on scales relatively large compared to the spacecraft separations, and which was

coined the “curlometer” technique; a wave telescope technique which is most reliable

where the field scale variations are comparable to the spacecraft separations; and a discon-

tinuity analysis technique for cases where the field scale variations are much shorter than

the spacecraft separations. Note that the Curlometer also provides an estimate of ∇ ·B via

Gauss’s Theorem. The finite difference equations at the core of the curlometer technique

can also be derived and efficiently solved by making use of barycentric coordinates. A

collection of methods based on barycentric coordinates are fully described in Chapter 14.

In the linear approximation, the barycentric estimates for ∇ × B and ∇ · B are identical

to those defined by contour integrals (as they should be for mathematical consistency).

For this reason, both forms are used here as a matter of mathematical convenience: to

employ the computational efficiency of the barycentric equations for the statistical anal-

ysis, for instance. The resulting estimates of J and the divergence of B are subject to

errors of which there are basically three types. The first relates to measurement uncer-

tainties in B, and in the spatial configuration of the four spacecraft. The second relates to

the linear interpolation which is made between the various measurement points. The third

relates to the simultaneity of the measurements. Sections 14.3 and 14.4 present theoretical

investigations of the first and second types of errors respectively.

The influence of these errors on the accuracy of the estimate of J or ∇ · B is strongly

related to the shape of the tetrahedron but also to the magnetic structure present. This, of

course, is not known (at least explicitly) for measured data. Since the shape of this tetra-

hedron evolves along the mean trajectory of the 4 spacecraft, it is particularly important to
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396 16. ACCURACY OF CURRENT DENSITY DETERMINATION

study the influence of the shape of the tetrahedron on the accuracy of the estimate of the

current density.

First of all, we identify the general basis for the curlometer method. We briefly explore

the effect of magnetic structure on the quality of the estimate of J , particularly highlighting

the possible effect of anisotropic structure on sampling, and set this in the Cluster context.

Then, using randomly simulated configurations for the case of a particular isotropic

magnetic structure, we discuss the following quantitative questions, in some detail: (i)

what parameters we have to use to characterise the shape of a given tetrahedron? (ii) what

is the relation between the geometrical shape of the tetrahedron and the accuracy of the

determination of J via the estimate of ∇ × B? (iii) can ∇ · B be used as an estimate

of the error 1J , as opposed to its use as a general indicator of physical coverage1? and

(iv) when the tetrahedron is relatively flat, is there a relation between the accuracy of the

determination of J and the orientation of the current with respect to the orientation of the

tetrahedron? These questions are studied with the help of a numerical simulation based on

a large number of possible tetrahedra and a model for the current structure.

16.2 The Curlometer Technique

16.2.1 Background

Use of the magnetic field alone requires the electric current density to be estimated

from Ampère’s law, which is physically valid over the dynamic range of dc magnetometer

measurements. By treating this current as constant over the tetrahedral volume formed by

the four spacecraft, a difference estimate of ∇ × B can be made. This estimate forms the

basis of the curlometer analysis technique. In reality, the current will always vary to some

degree over the tetrahedron and the best (a priori) knowledge of this lies in estimating ∇·B

under the same assumptions. Because of the solenoidality of the magnetic field (∇·B = 0),

any non-zero result arising from this estimate of ∇ · B arises from the neglected nonlinear

gradients in B (assuming that the error measurement is weak by respect to the error due to

the nonlinear gradients). These are of the same order as the second order terms in ∇ × B,

dropped by differencing (see below). This quantity only partly reflects the physical error,

arising from the coverage of the magnetic structure achieved by the spacecraft tetrahedron,

in the context of the gradients contributing to ∇ · B. The gradient of B and the nonlinear

contributions for ∇ × B, in particular, are not checked explicitly. The use of the estimate

of ∇ · B serves in this method as a quality indicator only.

During the development of the method the suitability of ∇ · B as a measure of the

physical uncertainty was extensively tested. It was concluded that for some structures ∇ ·B

does not necessarily form a particularly good estimate of the error in J . In particular, for

the case of a current tube, if statistically ∇ · B and 1J show the same variation, there is

no point to point correspondence (see Section 16.4.3). This has been also suggested by

comparisons of the J vector of the Tsyganenko-87 magnetic field model deduced from

the Cluster tetrahedron by the barycentric method with the J vector deduced by a finite

difference method on an arbitrary small scale.

1What is called here “physical coverage” and “nonlinear contributions” is related to the errors of truncation

(see section 14.4).
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For in situ analysis, the significance of ∇ ·B should therefore be quantified in terms of

the interpretation of the data being made (see Section 16.2.3), i.e., in terms of the properties

of different model structures being implied. Nevertheless, in many instances ∇ ·B/|∇×B|

can be used to discuss the quality of the current estimate.

The difference approximation leads via the integral form of Ampère’s law to:

µ0J av · (r1α × r1β) = 1B1α · r1β − 1B1β · r1α (16.1)

〈∇ · B〉av|r1α · (r1β × r1γ )| = |
∑

cyclic

1B1α · (r1β × r1γ )| (16.2)

where we have chosen to define differences between spacecraft to be relative to spacecraft

1; α, β, γ = 2, 3 and 4 are indices referring to the apexes of the tetrahedron. J av represents

the measured mean current over the tetrahedron volume (=J estimated in Section 16.3), and

〈∇ · B〉av is the differential estimate of ∇ · B for the tetrahedron. r1α and 1B1α rep-

resent the separation vectors and field differences between respective spacecraft. These

equations give the current normal to each face of the tetrahedron and therefore represent a

coordinate independent, natural expression of the current relative to the tetrahedral geom-

etry and orientation. As such, they immediately give a reflection of the physical coverage

of the magnetic structure sampled by the spacecraft array (note that the fourth face, not

involving spacecraft 1, forms a redundant estimate, but can be obtained by changing the

reference spacecraft). If independent reference components of J av are required, these

can, of course, be extracted by a further transformation, or by direct calculation, using

the cartesian, differential form of the equations, for example, and also with an equiva-

lent coordinate-independent formalism, employing barycentric coordinates. In Chapter 14

the use of the barycentric method is completely described, including the extraction of the

difference estimates for ∇ × B and ∇ · B.

Apart from the physical error (lack of accurate coverage by the spacecraft configura-

tion), the change in the current estimate, δJ , due to errors in the spacecraft separations and

in the magnetic field values measured at each spacecraft, can be estimated through an error

analysis of equation 16.1. Other sources of error, such as timing errors, are usually rela-

tively unimportant or are considered part of the field error. The relative measurement error

δJ/|J av| is used as the prime monitor of measurement performance in J av. It is useful for

understanding the variability found for δJ to express this conceptually as follows:

δJ

|J av|
= FB

δB

1B
+ FS

δr

1r
(16.3)

where the field error and the separation error are taken as component independent for

convenience of expression here.

In general, the form for δJ is not separable, and is nonlinear. The above form, how-

ever, highlights the fact that the relative current error depends fundamentally on the relative

measurement errors (in position and field), scaled by some factors, FB and FS , which de-

pend on the field differences and the separation vectors (i.e., magnetic structure between

the satellites and spacecraft configuration). Measurement and separation errors also con-

tribute to ∇ · B itself and may be a large part of the estimate obtained in situ. Although

for actual data this raises a further issue of interpretation of ∇ · B, for this work the use
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of model (simulated) data and known uncertainties allows the effect to be considered sep-

arately.

It should be noted that the method used in this chapter is not trivially extendable to the

case of more than 4 spacecraft. The basis for calculation of spatial gradients changes in

that case since the nonlinear terms can then be checked directly (second order terms in the

field differences can be determined), in principle, or the added redundancy with more than

4 points can be used to improve the physical estimates. Consideration of the significance

of the measurement accuracy would guide how this information is best used.

16.2.2 Application: Cluster Context

The factors FB and FS above are of order unity in the “best case” situation of a regular

tetrahedral configuration, sampling structures with spatial scales which are well matched

by the overall scale of the tetrahedron. In general, these increase as the tetrahedron dis-

torts, adversely affecting the contribution of these error sources, and typically, FB and FS

are ∼2–10, but this varies with magnetic structures also. Because of the critical nature of

the error functions (for J av but also for other combined parameters) and their sensitivity to

spacecraft formation, the scientific performance of each measurement (not restricted to the

magnetic field) will be highly constrained by orbital evolution. Typical values of the mag-

netic field measurement errors onboard Cluster are ∼ 0.1 nT for typical magnetospheric

magnetic fields along the Cluster orbit (up to ∼ 1000 nT). For the Cluster mission, a se-

quence of manoeuvres is anticipated which would modify the natural orbital evolution of

the spacecraft configuration. Scientific analysis of a particular plasma environment is lim-

ited by the resulting scale size and shape of the spacecraft tetrahedron. A particular orbit

phase will set both the configurational evolution over an orbit and the overall configuration

scale in each magnetospheric region and this is depicted in Figure 16.1.

Two orbit phases are shown which have typically, 1000 km separations (dayside) and

1 RE separations (nightside), respectively. The insets in the dayside plot are enlargements

of the projected configurations (×10). Very different evolution of the configuration is

apparent which samples the model magnetic structure, taken from the Tsyganenko-87 field

model, in a highly varied way. The curlometer method above allows the deformation

over an orbit to be monitored in terms of its affect on the error functions for J av. This

deformation is to the extent that such differential measurements would be prohibited for

significant fractions of the orbit. Similarly, the effect on ∇ · B/|∇ × B| can be monitored

over the orbit. Each quantity can be used independently as an indicator of measurement

performance: quality associated with measurement accuracy in the first case and quality of

the physical coverage of gradients in the second case. Other quantities may have different

regions of bad coverage.

In fact (see Figures 16.3 and 16.4), inspection of ∇ · B/|∇ × B| and δJ/|J av| reveals

two facts. Firstly, small separations clearly achieve crudely better linearity estimates of

spatial gradients, for some physical structure, since then the linear approximation is more

accurate. Secondly, however, accuracy is limited by the relative measurement errors which

become large at small separations because the absolute errors δB and δr are roughly con-

stant. Thus, for a fixed orbital evolution, the overall quality represented by each parameter

needs to be balanced: good linearity must still allow good relative measurement accuracy.

This is represented in the Figure 16.2.
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Figure 16.1: Dayside and nightside phases proposed for the first year of Cluster, showing

the evolution of the spacecraft configuration.

Note that the curves shown are conceptual and, of course, change relative value de-

pending upon the structure being sampled. The question is: what is achieved for a partic-

ular combined quantity (such as J ) and for particular phenomena or regions of the orbit?

For instance, the curves may cross at small or large separations and the quality of both the

physical coverage and measurement may be high over a large range of scales, simultane-

ously. Not all magnetic structures are suitable for gradient analysis, of course, and in some

instances other analysis techniques will be required for adequate performance.

A number of simple model structures have, in fact, been studied with simulated tra-

jectories, having a range of spacecraft configurations, using the analysis tool described

briefly in Section 16.2.3, below. It is clear from these studies that the characteristics con-

tained in the magnetic structures (spatial variation), plays a critical role in the balance

between the two conceptual curves shown above. The anisotropy and symmetry proper-

ties of the phenomena represented, changes the effect of the orientation of the spacecraft

configuration relative to the structure, alters the contribution of the nonlinear variations to

∇ · B/|∇ × B|, and, of course, affects the error functions defining δJ /|J av|. The charac-

teristic spatial scales of a phenomenon set the appropriate relative scales for the spacecraft
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Figure 16.2: Comparison of quality trends with the overall scale of the spacecraft config-

uration.

configuration (a key factor in defining the Cluster orbital phases). This sensitivity to mag-

netic structure is often complex since sampled events may exhibit a number of properties

(waves on boundaries, flux ropes, etc.) and is beyond the scope of the present chapter.

In the second part of this chapter, rather, a detailed study of configuration dependence is

discussed for a particular, important magnetic structure.

Over an orbit containing some configurational evolution, the two quality indicators

(∇ · B/|∇ × B| and δJ /|J av|) will exhibit individual error profiles, highly sensitive to

both the characteristic anisotropy and spatial scales of the magnetic structure sampled

and the geometry, relative orientation and relative size of the spacecraft configuration.

Figures 16.3 and 16.4 show examples of these sensitivities for the case of anticipated

Cluster situations in order to give a brief indication of the key results.

Referring back to the dayside orientation for the orbit shown in Figure 16.3, it should

be noted that many other evolutions will result for different starting configurations (here

chosen to be a regular tetrahedron at the northern cusp), but that the overall scale, within

this evolution, is set by the scale of the starting configuration.

Profiles for the two parameters are shown for two, similar choices for dayside phases

in the Figure 16.3. This plot shows variation against the true anomaly around the orbit,

with the evolution outside the magnetopause not shown and where the field is sampled

at the times over the orbit for each tetrahedral position. A nominal separation error of

5 km and a measurement error of 0.1 nT in the field have been assumed (no component

error dependence is monitored for simplicity). The parameters monitor poor quality (large

values here) when error contributions are high. Features in the trends arise from a combi-

nation of the effect of local magnetic structure, the relative separation scale and the degree

of tetrahedral distortion. The effect of spacecraft configuration will be more apparent

when sampled structure does not vary too widely or is unimportant for the calculation of

∇ · B/|∇ × B| and δJ/|J av|, the latter being true when the spacecraft configuration scale

is large relative to the model structure for instance (here Tsyganenko-87). Then the value

of ∇ · B/|∇ × B| is large, however, and the estimate of |J av| is unphysical (δJ/|J av| can
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Figure 16.3: Error profiles for ∇ · B/|∇ × B| and δJ/|J av| for two cases of dayside

evolution, both with starting configurations at the northern cusp. The Tsyganenko model

is used as model of magnetic structure.
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Figure 16.4: Error profiles for the nightside evolution, starting configuration at the mag-

netotail crossing (T87 model).
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still be used as a quality estimate in this case).

In fact, in the context of the Cluster orbital configurations, it is only for the small

separations shown in Figure 16.3 (<1000 km) that ∇ · B/|∇ × B| remains small. Note

that, because of the different evolution in each dayside case, the details of profile are

different, but that, overall, the trends are similar, particularly the large deviation between

∇ · B/|∇ × B| and δJ/|J av|: the physical coverage remains good, but measurement error

is bad as the spacecraft move away from the strong field region.

Key factors influencing the trends are the overall tetrahedral volume, the shape of the

configuration, the magnitude of B and the nature of the field curvature. These factors

combine to produce complicated dependencies and thus tetrahedral geometry alone is not

a good indicator for predicting the errors in these cases. The consistent trend to large

error in the plots for instance can be explained by the fact that the field magnitude varies

considerably; falling dramatically as the magnetopause is approached. Generally, for small

field intensities (and hence small differences between the spacecraft) the significance of

the error is enhanced. For strong curvature in B the value of ∇ ·B/|∇ ×B| may also grow.

The peak at 30◦ in the left-hand plot, however, can be associated with extreme distortion

in the tetrahedral shape. Similarly, the profiles after 240◦ are very different between the

plots because the evolution is dramatically different (note that for the right-hand case the

configuration is elongated in the direction perpendicular to the plane of view).

Figure 16.4 shows two cases for the nightside phase, for which a regular tetrahedron

is set up close to the tail current sheet crossing. For these larger separations, while error

quality is higher overall, reflecting the less critical nature of the separation error, ∇ · B

is now large (not shown for clarity). The evolution for the left-hand plot shows two clear

regions of severe distortion (as indicated by the insets, scaled by x10): one between 120◦–

180◦ and one centred on 270◦. These positions correspond to large errors in the current

estimate. Moreover, the current density peaks through the current sheet so that δJ/|J av|

is suppressed. The right-hand plot shows the orbit plotted in GSM coordinates. While,

clearly, the trends differ, in particular with regard to the positions of the peaks, the striking

feature is perhaps the similarity in profiles. In the right-hand plot the current sheet is

more clearly identified and the variation over the inner dayside magnetopause is smoother

since the cusp structure is not well sampled. The error peaks are still clearly identified

with extreme tetrahedral distortion, however; now with a double peak corresponding to

the positions ‘2’ and ‘3’.

Thus, for these large configurations, the effect of magnetic structure in δJ/|J av| has

been reduced, so that FS and FB depend mainly on tetrahedral geometry. This is in contrast

to the dayside phases where the effect of the sampled magnetic structure masks the effect

of the tetrahedral geometry. The dependence of ∇·B and δJ/|J av| on tetrahedral geometry

is covered quantitatively in detail for specific model structure in the next section.

16.2.3 Analysis Technique

The preceding discussion has concentrated on issues most relating to the analysis of

in situ data (for which there is no a priori knowledge of magnetic structure) and results

in a conceptual method arising from the combined use of ∇ · B and δJ/|J av| as quality

monitors relating to the curlometer technique. The use of ∇ · B makes no distinction be-

tween those spatial gradients which contribute differently to ∇ · B and ∇ × B: there is

an assumption that the terms in ∇ · B, as sampled, are as well represented, in combina-



404 16. ACCURACY OF CURRENT DENSITY DETERMINATION

tion, as the gradient terms in ∇ × B, or as poorly represented. The conceptual flow may

contain further interpretation (or assumption) of event properties, however, following an

initial analysis and combination of the data. This, of course, guides the application of the

technique. The evidence obtained from simple models (e.g. where the direction of ∇ × B

does not change) is that ∇ · B works well for indicating poor coverage for J , at least in

statistical sense. Such a technique has been designed and tested with a variety of simulated

situations and is briefly described below.

Although an estimate for the current density can always be made, the above discussion

suggests that two key areas of quality control can be pursued: the physical error, repre-

sented (crudely) by ∇ · B/|∇ × B|, and the measurement error, represented by δJ/|J av|.

The estimate of ∇ · B itself separates the nature of the analysis which can be performed

on actual events. Even if ∇ ·B/|∇ ×B| is well behaved, measurement quality may not be

high for all components of J , and this must be monitored as part of the analysis. A poor

estimate of ∇ ·B/|∇ ×B| indicates a possibly poor physical estimate of some components

of J , requiring further (independent) interpretation of the sampled structure (for example,

the size of the components of the gradient or stationarity properties). If ∇ · B/|∇ × B| is

not well behaved, therefore, gradient analysis can still be performed on individual terms

in the dyadic ∇B and the time dependence of the event can be checked.

The technique has been used to investigate a number of simulated events using a variety

of magnetic structures. It is clear from this study that for strongly anisotropic structures,

having spatial scales at least of the order of the spatial scales of the spacecraft configu-

ration, the orientation of the configuration with respect to model is crucial as suggested

above. For some orientations the estimates show better coverage with distorted configura-

tions than for regular configurations when comparing the estimated J to the mean current

for the model.

16.3 Accuracy of Current Density Determination

16.3.1 Parameters Used to Define the Shape of a Tetrahedron

Chapter 13 is dedicated to the study of “quality factors” which could describe the shape

of a tetrahedron. In the past, the relationship between the accuracy of the current density

determination and the shape of the tetrahedron has been studied with various 1-D param-

eters. The main result was that there exist two categories of 1-D parameter: one which

attempts to describe the geometrical shape, and a second which is directly connected to

the relative accuracy of the measurement. This was a conclusion deduced from observation

and simulation, but not explained. Chapter 13 studies this observation, and has checked

the validity of the 1-D parameters. The main conclusion of that chapter is that the best

way to describe the shape of the tetrahedron, and understand what happens, is to use a 2-D

geometric factor, made up of two parameters, the elongation E and planarity P parameters,

which are deduced from the volumetric tensor (see Chapters 12 and 13).

Here we take again this method, and all parameters such as the total difference between

the estimated and the theoretical, mean |J | defined by the model, 1J/J (see precise

definition in Section 16.3.5), and parameters such as ∇ ·B and ∇ ×B will be studied in an

elongation-planarity (E-P ) diagram, which allows us to characterise more precisely the

relationship between the shape of the tetrahedron and the accuracy of the estimate of the
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current density, and furthermore to understood why, in certain cases, the estimate of the

measurement is good, and why, in other cases, this estimate is bad. ⇒16.1

16.3.2 Simulation Method

The following method has been used to check the possible relation between the shape

of the tetrahedron and the accuracy of the current density determination:

• firstly, we use a high number of tetrahedra, corresponding to several possible geo-

metric configurations, taken from a “configurations reservoir”;

• secondly, we use a model of current density structure, with a characteristic scale

larger than the size of the tetrahedron, such that all the vertices of the tetrahedron

are contained inside the current structure;

• thirdly, we add independent noise on the B magnetic components at the 4 spacecraft

positions (the four vertices of the tetrahedron) and we compute vector parameters

such as ∇ · B, ∇ × B, and the relative error 1J/J on the determination of J .

16.3.3 The Tetrahedron Reservoir

The shape of the tetrahedron is characterised by the E-P parameter. We try to identify

a possible relationship between the value of these parameters and the accuracy of the

estimate of ∇ × B and ∇ · B. Firstly, to be sure that various kinds of tetrahedra are

taken into account, we use the “homogeneous tetrahedra reservoir” defined in 13.5.1 of

Chapter 13. This reservoir contains about 1000 tetrahedra and offers an homogeneous

coverage of the E-P plane. So, this reservoir contains a wide variety of configurations.

To avoid any bias, the tetrahedra taken from the reservoir are reprocessed as follows: (i)

they are computed in the barycentric coordinates, (ii) all the tetrahedra are normalised to

the same mean inter-spacecraft distance 〈D〉, (iii) their orientations are perturbed so as to

have a random orientation in space, and (iv) the position of the centre of each tetrahedron

is translated to −2500 km, in order to avoid the centre of the current structure which could

be a particular case.

16.3.4 The Current Structure Models

The goal is to simulate the crossing of a current structure by the Cluster constellation.

We have therefore to define a current structure model. The chosen model is described

in Figures 16.5 and 16.6: it consists of a cylindrical current tube, with an homogeneous

current density (Figure 16.5), or a Gaussian current density profile (Figure 16.6). In all

cases, we assume that the size of the Cluster tetrahedron is smaller than the size of the

current density structure, so that all the spacecraft are simultaneously located inside the

current density structure. Typical values are 〈D〉 = 1000 km, R or σ = 5000 km, Jo =

10−8 amp/m2.
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Jo=10-8 A.m-2

R=5000 km

r

<D>=1000 km
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Figure 16.5: Current tube with homogeneous current density profile.

Jo=10
-8

 A.m
-2

σ=5000 km

r

<D>=1000 km

Jo

Figure 16.6: Current tube with Gaussian current density profile.



16.4. Results 407

16.3.5 The Computation of J and ∇ · B

The uncertainty in the measurements of B (or the uncertainty in the restitution of the

spacecraft attitude) is simulated by adding a random noise on the 3 components of the 4

Bα vectors. Similarly a random noise is added to the 4 rα vectors describing the positions

of the 4 spacecraft. The amplitude 1B of the noise added on the 4 magnetic field vectors

is independent of the components, and proportional to |B|. The uncertainty 1r in the

knowledge of the spacecraft position is taken to be proportional to 〈D〉, the average inter-

spacecraft distance. 1B/B or 1r/r represent the relative accuracy in the determination

of Bα and rα . The relative errors 1B/B and 1r/r are defined as:

1B/B = 1B/
1

N

4
∑

α=1

|Bα|

1r/r = 1r/
1

N

4
∑

α=1

|rα|

Typical values for 1r/r are 1%, which correspond to the nominal values given by the

Cluster project. ∇ ·B and J = ∇ ×B/µ0 are computed from the perturbed simulated data

by the barycentric coordinates method, and we obtain an estimate of the J or ∇ × B/µo

vector which is compared to the real value of the average of J at each vertex given by the

model. Although the uncertainty in the modulus and the direction of J have been studied,

we present here only the results corresponding to the modulus of J , that we note hereafter

J . Thus the relative accuracy of the estimate of J , 1J/J , can be estimated. The definition

of 1J/J is:

1J/J =
µ01J

|∇ × B|model
=

|J estimated| − |J model|

|J model|
(16.4)

where |J model| is the mean value of the 4 |Ji | values of the model at the 4 vertices of

the tetrahedron, and |J estimated| is the estimate of |J | by the barycentric method, which

is equivalent with |J av| used in Section 16.2. Of course, from Ampère’s law, and taking

into account the different kinds of errors, we note µ0|J
estimated| = |∇ × B| estimated. It has

been shown that the errors 1B/B or 1r/r have the same effect on the accuracy 1J/J .

Therefore, for the sake of simplicity, we will only consider the perturbation 1r/r . This

computation is made for all the tetrahedra taken from the reservoir defined in Chapter 13,

thus all the E-P plane is covered.

16.4 Results

16.4.1 Influence of the Shape of the Tetrahedron on the Relative Ac-

curacy 1J/J

First we consider an homogeneous current density profile, and therefore there is no er-

ror associated with the linear interpolation between the measurement made at the 4 space-

craft locations; only the uncertainties on the positions of the measurement points are taken

into account (1r/r = 1%, 1B/B = 0).
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The main results are shown in Figure 16.7, where we have plotted the relative accuracy

1J/J in an E-P diagram. The size and the colours of the circles indicate the values of

1J/J : for 1J/J = 0, the radius of the circle is just an invisible point, the largest circles

correspond to 1J/J ≥ 10%. Note that there is no small circle hidden behind a large one, ⇒16.2

the circles being sorted by size before plotting.

Adopting the five types of tetrahedra defined in Chapter 13 as description of shape, the

main conclusion is that for a large fraction of the diagram, corresponding to the “Pseudo-

Spheres type” and to a large fraction of the “Potatoes type”, the relative error 1J/J re-

mains below 2%. For values of the elongation or planarity parameter larger than about 0.6, ⇒16.3

the errors reach 3% or more. For E or P > 0.9, which corresponds to a very long or a ⇒16.2

very flat tetrahedron, the error can reach 10% and more, especially of course when both E ⇒16.2

and P get of the order of unity. As a matter of fact, the error increases roughly with the

radius r =
√

(E2 + P 2), but this variation is not linear.

16.4.2 Influence of the Shape of the Tetrahedron on the Estimate of

∇ · B/|∇ × B|

Similar results are shown in the Figure 16.8, for ∇ · B and ∇ × B estimated from the

simulated measurement values. Notice that the current density profile being homogeneous,

the theoretical value of |∇ × B| is the same for all the points, and the |∇ × B| estimated

values differs from the theoretical ones according the results of Figure 16.7 where 1J/J

is defined by equation 16.4 (see Section 16.3.5).

The theoretical value of ∇ ·B is obviously equal to zero. Since ∇ ·B is not a normalised

quantity, we have chosen to display the estimate of the ratio ∇ ·B/|∇ ×B| rather than the

value of ∇ · B. The colour code is the same as for 1J/J . Roughly speaking, the diagram

looks the same as for 1J/J , the “Pseudo-Spheres” and “Potatoes” types gives the lower

values of the divergence, and a large value of E or P leads to a large value of the estimated

divergence.

16.4.3 Relationship between 1J/J and ∇ · B/|∇ × B|

Since the ∇ · B/|∇ × B| diagram looks the same as the 1J/J diagram, one would

expect that the estimated ratio ∇ · B/|∇ × B| is an estimate of the error 1J/J . This is

statistically true (see previous section), but a more careful investigation shows that there

is no one to one correspondence between the two diagrams; a large value of 1J/J can

correspond to a small value of ∇ · B/|∇ × B| ratio, and vice versa: good estimates of J

can correspond to large value of the divergence (large ∇ ·B/|∇ ×B| ). This is particularly

true for large values of E or P .

In order to reveal a possible relationship between 1J/J and ∇ · B/|∇ × B|, we have

plotted these quantities in together in Figure 16.9. The colour code and the symbols corre-

spond to the family of the tetrahedra defined in Chapter 13 (circle for Pseudo-Spheres, hor-

izontal ellipsoid for Cigars, triangle for Pancakes, diamond for Knife Blade, and oblique

ellipsoid for Potatoes).

A possible relationship between these two parameter would result in the alignment of

the representative points. This is not observed; the distribution of the points has no pre-

ferred direction. Of course the area of the “Pseudo-Spheres” (round symbols) is restricted

to the central part of the diagram, close to zero, while the other types cover all the diagram.
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Figure 16.7: Influence of the shape of the tetrahedron on the estimate of |J |.
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Figure 16.8: Influence of the shape of the tetrahedron on the estimate of the ratio

∇ · B/|∇ × B|.
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Figure 16.9: Relationship between the error 1J/J and the ratio ∇ · B/|∇ × B|.

The non-existence of a correlation between ∇ ·B and 1J can be explained by the fact

that the computation of ∇ · B and ∇ × B involve different combinations of the compo-

nents of the dyadic ∇B. The divergence is obtained from the diagonal terms, while the

curl is built from the off-diagonal terms. These terms being perturbed by the addition of

an independent random noise on the 12 components defining the 4 spacecraft positions

to simulate the uncertainties on the measurement of these positions, the corresponding

errors on the gradient tensor are not dependent. Practically, if the errors on the various

components are effectively independent, it means that we cannot use the value of the es-

timated divergence to estimate the error 1J due to the measurement uncertainties. Thus,

for sampling “blind events”, the uncertainty on J can be calculated by equation 16.3 (see

Section 16.2). Moreover, this result means that a particular configuration shape (classi-

fied by E-P ) does not alone absolutely order the measurement error, except statistically

(all orientations); the relative orientation to the magnetic structure also influences this (see

Section 13.2 on “Measurement Performance”, page 324).

16.4.4 Influence of the Current Direction on the Error 1J/J

In the present section, we investigate the possible influence of the direction of the

current with respect to the largest face of the tetrahedron on the errors. Figure 16.10 shows

the result: the relative error 1J/J is plotted versus the angle θ between the direction of

the current and the normal to the main plane of the tetrahedron. The main plane of the
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Figure 16.10: Influence of the current density direction on the error 1J/J .

tetrahedron is defined as the plane containing the major and middle semiaxes of the inertial

ellipsoid, thus the normal to this plane is the minor semiaxis.

As defined in Section 16.4.3, a colour code and a symbol are used to separate the

different families of tetrahedra defined in Chapter 13. The “Pseudo-Spheres” have been

removed from the figure because the main plane has no meaning for a sphere. One could

expect to find in this diagram a relationship between 1J/J and θ , showing for instance

that the quality of the estimate would be better when the current is orthogonal to the main

plane. Examination of Figure 16.10 show that the (expected) minimum of 1J/J for

θ = 0◦ or θ = 180◦ seems roughly clear. One can observe a slight tendency in the

case of the “Pancakes”, for which the main plane has of course the clearest meaning, but

this relationship is not very obvious because the distribution of the point in this diagram is

not homogeneous along the θ axis, and there is not enough point near θ = 0◦ or θ = 180◦

to get a clear-cut conclusion. Therefore, practically, it seems that the angle θ plays a role

in the organisation of the diagram, and error 1J/J can be related to this angle, at least for

the particular model of an homogeneous current tube.

16.4.5 Heterogeneous Current Profile

The estimate of the current density inside the volume defined by the tetrahedron relies

on the assumption that the magnetic field varies linearly between two spacecraft. If the

current density profile is not homogeneous in space (as it is the case here), higher orders
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derivatives introduce a key source of errors in the estimate of ∇ × B and ∇ · B. To

study its effect, we use a Gaussian shape for the current density profile, such as the one

shown in Figure 16.6, and define an heterogeneity factor h = 〈D〉/σ where 〈D〉 is the

mean inter-spacecraft distance and σ is the root mean square deviation of the Gaussian. In

order to better illustrate the effect of heterogeneity of the profile, we hereafter neglect the

uncertainties 1B/B and 1r/r which are set to zero.

Figure 16.11 shows the relationship between the shape of the tetrahedron, again de-

fined by the E and P parameters, and the accuracy 1J/J of the estimate, for a low value

of the heterogeneity factor.

The chosen value: h=0.1, being low, the profile of the current structure is not very

heterogeneous at the scale of the Cluster tetrahedron, thus the relative error 1J/J is very

low, except for large values of E or P . For large values of E and P we find a result similar

to the homogeneous case (but then with a relative error 1r/r of 1%, see Figure 16.7

before). As before, the error grows up rapidly as soon as the tetrahedron degenerates to a

very flat or a very elongated configuration. Increasing the heterogeneity factor, for instance

h=0.2 (Figure 16.12), leads to a rapid growth of the error 1J/J , but the conclusion about

the shape remains similar.

Nevertheless, it seems that the heterogeneous case is more sensitive to a flat or a linear

tetrahedron than the homogeneous case; in other words it seems that the errors due to

the linear interpolation are more sensitive for a non-regular tetrahedron that the errors

associated with uncertainty on 1r/r or 1B/B. This is particularly true for the ∇ ·B/|∇×

B| ratio. Figures 16.13 and 16.14 show the ratio ∇ · B/|∇ × B| for h=0.1 and h=0.2.

Comparisons between Figures 16.13 and 16.14, and between Figures 16.11 and 16.12

show that ∇ · B/|∇ × B| is more sensitive to the configuration than 1J/J . Since the

errors on ∇ · B and |∇ × B| are unrelated, the total error on the ∇ · B/|∇ × B| ratio is

larger (no closely quantitative correspondence is anyway implied).

We have checked that the other conclusions, obtained in the homogeneous case, remain

the same in the heterogeneous case. In particular, Figures 16.9 and 16.10 look the same

with a finite low value of h. Thus, even in the heterogeneous case, there is no point to

point correlation between 1J/J and ∇ ·B/|∇ ×B|. The relationship between 1J/J and

the angle θ is apparent, particularly near the limiting values θ = 0◦ or θ = 180◦, with the

same restriction than the one for the homogeneous case.

16.5 Conclusions

The curlometer technique, for in situ measurements, uses two parameters to monitor

different quality aspects: ∇ ·B/|∇ ×B| and δJ/|J av|. A large value of ∇ ·B, due to non-

linear dependence in the gradients contributing to ∇ · B (assuming that the measurement

errors are weak regarding the physical error), may indicate that J is badly represented by

the data, unless the sampling is favourable. The sampling achieved arises from both the

configuration parameters (including relative orientation and scale) and the particular mag-

netic structure encountered (which defines the character of terms in the gradients matrix

of B). But, of course, when handling real data, we have to assume that J will be badly

measured, as indicated by ∇ · B, until we know otherwise. In this regard, other analysis

techniques or model assumptions, which need to be checked for consistency, may be used

iteratively with the curlometer to improve understanding of an event. When ∇ ·B is small,
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Figure 16.11: Influence of the shape of the tetrahedron on the estimate of J for a low

degree of heterogeneity (h = 0.1).
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Figure 16.12: Same as Figure 16.11, but for a higher degree of heterogeneity (h = 0.2).
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Figure 16.13: Influence of the shape of the tetrahedron on the estimated ratio ∇·B/|∇×B|,

for a low degree of heterogeneity (h=0.1, 1B/B=1r/r = 0).
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Figure 16.14: Same as Figure 16.13, but for a higher degree of heterogeneity (h=0.2).
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we can assume that J remains statistically (and statistically only, see below the conclu-

sion about the relationship between ∇ · B and δJ ) well represented by the data unless the

measurement error contribution δJ/|J av| (coming from δB and δr), to the error in J , is

large.

We therefore have two nearly independent parameters for the in situ monitoring: ∇ ·B

which may indicates a physical sampling error when the nonlinear terms dominate, and

δJ/|J av| which identifies measurement accuracy. It should be understood that not all

situations are conducive to the technique and full analysis is performed by hierarchical

application of a number of different techniques.

A significant result from Section 16.2 is that ∇ · B is large for the Cluster orbit phases

given, where the Cluster tetrahedron is moving into the Tsyganenko-87 magnetic field

model. The parameter δj/|J av| is smaller, overall, for the larger separations. This is more

or less as expected: J is physically better represented by the data when the tetrahedral

dimensions are small, but δj/|J av| is smaller for large configurations, due to the combined

effects of larger field differences between the satellites and a small (∼1%) relative error in

the separations. For the mission phases considered here, an optimum range of separation

scales, where both the physical estimate and the measurement accuracy remain good, does

not exist. The parameters show several instances where the physical coverage (roughly

represented by ∇ · B) is insufficient to identify overall quality for the measurement.

To characterise the shape of the tetrahedron, as we have seen in Chapter 12 and 13,

the best way is to use the elongation and planarity parameters (E, P ) defined and used in

Chapter 13 for the description of the shape. Its orientation in space is defined by the three

orthogonal vectors corresponding to the directions of the three axes of the pseudo-ellipsoid

computed from the volumetric tensor defined in Chapter 12. Vector c corresponds to the

minor axis and is used for description of the orientation of the main face. By introducing

the E-P diagram to plot quantities such as the relative accuracy 1J/J or other interesting

quantities, we have a good tool to analyse the relationship between a scientific parameter

and the shape of the tetrahedron, for a given event model. In the same manner, by using

the θ angle between the c vector and the direction of the current, we can analyse the effect

of the orientation of the tetrahedron on the accuracy of the measurement.

The relationship between the shape of the tetrahedron and 1J/J has been shown by

a simulation of the crossing, by 4 spacecraft, of a particular current density structure. This

simulation allows an independent estimate of the effects of the various error sources, such

as uncertainties on the position of the spacecraft, on the magnetometer measurements,

and errors due to the spatial interpolation used for the computation of the various vector

gradients. The simulation gives the relative accuracy 1J/J of the measurement for all

variables. In particular, the accuracy 1J/J has been plotted in an (E-P ) diagram, which

organises the results well and relates easily the shape of the tetrahedron to the accuracy

of the estimate of J or ∇ · B. Furthermore, the E-P diagram is useful to get a quantita-

tive estimate of this influence, and to check whether a regular tetrahedron leads to a more

accurate estimate of J and ∇ · B than the corresponding estimates for a distorted tetra-

hedron. Roughly speaking, the distance between the representative point and the origin is

proportional to the error on the accuracy of the estimate of both these quantities which,

statistically only, show the same trend (see below).

The conclusions are roughly the same for homogeneous and for heterogeneous cases,

but it seems that the error due to linear interpolation, in the heterogeneous case, is more
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sensitive to a non-regular tetrahedron than the errors due to a relative uncertainty 1r/r on

the positions. This is particularly true for the ∇ ·B/|∇×B| ratio. In a future work, it would

be interesting to quantify the amplitude of the linearity errors versus the heterogeneity

parameter.

A potential relationship between ∇ ·B and 1J has been studied in detail. Statistically,

the ratio ∇ · B/|∇ × B| has the same behaviour as 1J/J , but on close inspection there is

no one to one correspondence. There are at least two reasons for this. Firstly, one reason is

obvious: since ∇ ·B and ∇ ×B are computed from different terms of the dyadic ∇B used

by the barycentric method (see Chapters 14 and 15), and unless the errors are dependent

(this can be nevertheless the case for special structures), there is no point to point corre-

lation between the estimated ∇ · B and the estimated ∇ × B and therefore no correlation

between ∇ · B/|∇ × B| and 1J/J . A second additional reason is that the orientation

of the tetrahedron in particular cases, associated with the particular current density struc-

ture used, plays a controlling role in this lack of correspondence which has to be more

explained. Thus, if the various contributions to measurement errors are independent or if

the nonlinear contributions to ∇ · B and ∇ × B are independent, then ∇ · B should not be

used as a reliable estimate of the overall accuracy of the measurement of J. Nevertheless,

for straight current tubes, the statistical behaviour of ∇ · B/|∇ × B| looks the same as

1J/J , which gives justification of the use of ∇ · B as an indication of the quality of the

physical coverage if the measurement errors can be neglected, or of the measurement error

if the current structure is homogeneous.

The influence of the direction of the current with respect to the orientation of the tetra-

hedron has been examined. Indeed, for a nearly flat tetrahedron, one would expect a

relationship between the angle θ (defined as the angle between the direction of the current

and the normal to the main plane of the tetrahedron) and the 1J/J error. The simulation

shows that a relation exists, but the low number of points near θ close to 0◦ or 180◦ leads

to a reserved conclusion. Other simulations are necessary to better clarify this relation,

and in particular to identify the behaviour in this context of the different type of tetrahedra

such as Pancakes, Knife Blades, Cigars, etc.

All these conclusions, of course, could be modified for another type of magnetic struc-

ture. The effect of different characteristic magnetic properties (events sampled) on mea-

surement performance needs to be investigated more thoroughly, particularly with regard

to anisotropic structure. Tools and simulations used in this chapter are well suited for such

an event study and should be performed in conjunction with other possible methods.
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