Reprinted from Analysis Methods for Multi-Spacecraft Data
Gotz Paschmann and Patrick W. Daly (Eds.),
ISSI Scientific Report SR-001 (Electronic edition 1.1)
© 1998, 2000 ISSI/ESA

—16 —

Accuracy of Current Density Determination

PATRICK ROBERT

Centre National de la Recherche Scientifique,
Vélizy, France

MALcoLM W. DUNLOP

Imperial College of Science, Technology and Medicine
London, United Kingdom

ALAIN ROUX AND GERARD CHANTEUR

Centre National de la Recherche Scientifique,
Vélizy, France

16.1 Introduction

The four Cluster spacecraft will enable simultaneous measurements of the vector mag-
netic field at the vertices of a tetrahedron. Methods for analysing such data include: a
contour integral method for determining the electric current density (from V x B) in fields
varying on scales relatively large compared to the spacecraft separations, and which was
coined the “curlometer” technique; a wave telescope technique which is most reliable
where the field scale variations are comparable to the spacecraft separations; and a discon-
tinuity analysis technique for cases where the field scale variations are much shorter than
the spacecraft separations. Note that the Curlometer also provides an estimate of V - B via
Gauss’s Theorem. The finite difference equations at the core of the curlometer technique
can also be derived and efficiently solved by making use of barycentric coordinates. A
collection of methods based on barycentric coordinates are fully described in Chapter 14.
In the linear approximation, the barycentric estimates for V x B and V - B are identical
to those defined by contour integrals (as they should be for mathematical consistency).

For this reason, both forms are used here as a matter of mathematical convenience: to
employ the computational efficiency of the barycentric equations for the statistical anal-
ysis, for instance. The resulting estimates of J and the divergence of B are subject to
errors of which there are basically three types. The first relates to measurement uncer-
tainties in B, and in the spatial configuration of the four spacecraft. The second relates to
the linear interpolation which is made between the various measurement points. The third
relates to the simultaneity of the measurements. Sections 14.3 and 14.4 present theoretical
investigations of the first and second types of errors respectively.

The influence of these errors on the accuracy of the estimate of J or V - B is strongly
related to the shape of the tetrahedron but also to the magnetic structure present. This, of
course, is not known (at least explicitly) for measured data. Since the shape of this tetra-
hedron evolves along the mean trajectory of the 4 spacecraft, it is particularly important to
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396 16. ACCURACY OF CURRENT DENSITY DETERMINATION

study the influence of the shape of the tetrahedron on the accuracy of the estimate of the
current density.

First of all, we identify the general basis for the curlometer method. We briefly explore
the effect of magnetic structure on the quality of the estimate of J, particularly highlighting
the possible effect of anisotropic structure on sampling, and set this in the Cluster context.

Then, using randomly simulated configurations for the case of a particular isotropic
magnetic structure, we discuss the following quantitative questions, in some detail: (i)
what parameters we have to use to characterise the shape of a given tetrahedron? (ii) what
is the relation between the geometrical shape of the tetrahedron and the accuracy of the
determination of J via the estimate of V x B? (iii) can V - B be used as an estimate
of the error AJ, as opposed to its use as a general indicator of physical coverage'? and
(iv) when the tetrahedron is relatively flat, is there a relation between the accuracy of the
determination of J and the orientation of the current with respect to the orientation of the
tetrahedron? These questions are studied with the help of a numerical simulation based on
a large number of possible tetrahedra and a model for the current structure.

16.2 The Curlometer Technique

16.2.1 Background

Use of the magnetic field alone requires the electric current density to be estimated
from Ampere’s law, which is physically valid over the dynamic range of dc magnetometer
measurements. By treating this current as constant over the tetrahedral volume formed by
the four spacecraft, a difference estimate of V x B can be made. This estimate forms the
basis of the curlometer analysis technique. In reality, the current will always vary to some
degree over the tetrahedron and the best (a priori) knowledge of this lies in estimating V- B
under the same assumptions. Because of the solenoidality of the magnetic field (V-B = 0),
any non-zero result arising from this estimate of V - B arises from the neglected nonlinear
gradients in B (assuming that the error measurement is weak by respect to the error due to
the nonlinear gradients). These are of the same order as the second order terms in V x B,
dropped by differencing (see below). This quantity only partly reflects the physical error,
arising from the coverage of the magnetic structure achieved by the spacecraft tetrahedron,
in the context of the gradients contributing to V « B. The gradient of B and the nonlinear
contributions for V x B, in particular, are not checked explicitly. The use of the estimate
of V . B serves in this method as a quality indicator only.

During the development of the method the suitability of V - B as a measure of the
physical uncertainty was extensively tested. It was concluded that for some structures V- B
does not necessarily form a particularly good estimate of the error in J. In particular, for
the case of a current tube, if statistically V - B and AJ show the same variation, there is
no point to point correspondence (see Section 16.4.3). This has been also suggested by
comparisons of the J vector of the Tsyganenko-87 magnetic field model deduced from
the Cluster tetrahedron by the barycentric method with the J vector deduced by a finite
difference method on an arbitrary small scale.

IWhat is called here “physical coverage” and “nonlinear contributions” is related to the errors of truncation
(see section 14.4).



16.2. The Curlometer Technique 397

For in situ analysis, the significance of V « B should therefore be quantified in terms of
the interpretation of the data being made (see Section 16.2.3), i.e., in terms of the properties
of different model structures being implied. Nevertheless, in many instances V- B/|V x B)|
can be used to discuss the quality of the current estimate.

The difference approximation leads via the integral form of Ampere’s law to:

moday + (g Xrigy =AB1y 1r1g — AB1g - rig (16.1)
(VeB)ay|ria - (rip x rly)| = | Z ABjy - (rlﬁ X rly)| (16.2)
cyclic

where we have chosen to define differences between spacecraft to be relative to spacecraft
1; a, B, v =2, 3 and 4 are indices referring to the apexes of the tetrahedron. J,y represents
the measured mean current over the tetrahedron volume (=J ¢simatd jn Section 16.3), and
(V « B)yy is the differential estimate of V - B for the tetrahedron. rj, and AB, rep-
resent the separation vectors and field differences between respective spacecraft. These
equations give the current normal to each face of the tetrahedron and therefore represent a
coordinate independent, natural expression of the current relative to the tetrahedral geom-
etry and orientation. As such, they immediately give a reflection of the physical coverage
of the magnetic structure sampled by the spacecraft array (note that the fourth face, not
involving spacecraft 1, forms a redundant estimate, but can be obtained by changing the
reference spacecraft). If independent reference components of J,, are required, these
can, of course, be extracted by a further transformation, or by direct calculation, using
the cartesian, differential form of the equations, for example, and also with an equiva-
lent coordinate-independent formalism, employing barycentric coordinates. In Chapter 14
the use of the barycentric method is completely described, including the extraction of the
difference estimates for V.x B and V - B.

Apart from the physical error (lack of accurate coverage by the spacecraft configura-
tion), the change in the current estimate, §J, due to errors in the spacecraft separations and
in the magnetic field values measured at each spacecraft, can be estimated through an error
analysis of equation 16.1. Other sources of error, such as timing errors, are usually rela-
tively unimportant or are considered part of the field error. The relative measurement error
8J/|J ay| is used as the prime monitor of measurement performance in J ,y. It is useful for
understanding the variability found for §J to express this conceptually as follows:

8 _ . 9B F Sr (163)
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where the field error and the separation error are taken as component independent for
convenience of expression here.

In general, the form for §J is not separable, and is nonlinear. The above form, how-
ever, highlights the fact that the relative current error depends fundamentally on the relative
measurement errors (in position and field), scaled by some factors, Fp and Fg, which de-
pend on the field differences and the separation vectors (i.e., magnetic structure between
the satellites and spacecraft configuration). Measurement and separation errors also con-
tribute to V - B itself and may be a large part of the estimate obtained in situ. Although
for actual data this raises a further issue of interpretation of V - B, for this work the use
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of model (simulated) data and known uncertainties allows the effect to be considered sep-
arately.

It should be noted that the method used in this chapter is not trivially extendable to the
case of more than 4 spacecraft. The basis for calculation of spatial gradients changes in
that case since the nonlinear terms can then be checked directly (second order terms in the
field differences can be determined), in principle, or the added redundancy with more than
4 points can be used to improve the physical estimates. Consideration of the significance
of the measurement accuracy would guide how this information is best used.

16.2.2 Application: Cluster Context

The factors Fp and Fg above are of order unity in the “best case” situation of a regular
tetrahedral configuration, sampling structures with spatial scales which are well matched
by the overall scale of the tetrahedron. In general, these increase as the tetrahedron dis-
torts, adversely affecting the contribution of these error sources, and typically, Fp and F§s
are ~2—-10, but this varies with magnetic structures also. Because of the critical nature of
the error functions (for J 5y but also for other combined parameters) and their sensitivity to
spacecraft formation, the scientific performance of each measurement (not restricted to the
magnetic field) will be highly constrained by orbital evolution. Typical values of the mag-
netic field measurement errors onboard Cluster are ~ 0.1 nT for typical magnetospheric
magnetic fields along the Cluster orbit (up to ~ 1000 nT). For the Cluster mission, a se-
quence of manoeuvres is anticipated which would modify the natural orbital evolution of
the spacecraft configuration. Scientific analysis of a particular plasma environment is lim-
ited by the resulting scale size and shape of the spacecraft tetrahedron. A particular orbit
phase will set both the configurational evolution over an orbit and the overall configuration
scale in each magnetospheric region and this is depicted in Figure 16.1.

Two orbit phases are shown which have typically, 1000 km separations (dayside) and
1 RE separations (nightside), respectively. The insets in the dayside plot are enlargements
of the projected configurations (x10). Very different evolution of the configuration is
apparent which samples the model magnetic structure, taken from the Tsyganenko-87 field
model, in a highly varied way. The curlometer method above allows the deformation
over an orbit to be monitored in terms of its affect on the error functions for J,,. This
deformation is to the extent that such differential measurements would be prohibited for
significant fractions of the orbit. Similarly, the effect on V - B/|V x B| can be monitored
over the orbit. Each quantity can be used independently as an indicator of measurement
performance: quality associated with measurement accuracy in the first case and quality of
the physical coverage of gradients in the second case. Other quantities may have different
regions of bad coverage.

In fact (see Figures 16.3 and 16.4), inspection of V - B/|V x B|and §J/|J ay| reveals
two facts. Firstly, small separations clearly achieve crudely better linearity estimates of
spatial gradients, for some physical structure, since then the linear approximation is more
accurate. Secondly, however, accuracy is limited by the relative measurement errors which
become large at small separations because the absolute errors § B and §r are roughly con-
stant. Thus, for a fixed orbital evolution, the overall quality represented by each parameter
needs to be balanced: good linearity must still allow good relative measurement accuracy.
This is represented in the Figure 16.2.
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Figure 16.1: Dayside and nightside phases proposed for the first year of Cluster, showing
the evolution of the spacecraft configuration.

Note that the curves shown are conceptual and, of course, change relative value de-
pending upon the structure being sampled. The question is: what is achieved for a partic-
ular combined quantity (such as J) and for particular phenomena or regions of the orbit?
For instance, the curves may cross at small or large separations and the quality of both the
physical coverage and measurement may be high over a large range of scales, simultane-
ously. Not all magnetic structures are suitable for gradient analysis, of course, and in some
instances other analysis techniques will be required for adequate performance.

A number of simple model structures have, in fact, been studied with simulated tra-
jectories, having a range of spacecraft configurations, using the analysis tool described
briefly in Section 16.2.3, below. It is clear from these studies that the characteristics con-
tained in the magnetic structures (spatial variation), plays a critical role in the balance
between the two conceptual curves shown above. The anisotropy and symmetry proper-
ties of the phenomena represented, changes the effect of the orientation of the spacecraft
configuration relative to the structure, alters the contribution of the nonlinear variations to
V .- B/|V x B], and, of course, affects the error functions defining §J/|J ay|. The charac-
teristic spatial scales of a phenomenon set the appropriate relative scales for the spacecraft
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Figure 16.2: Comparison of quality trends with the overall scale of the spacecraft config-
uration.

configuration (a key factor in defining the Cluster orbital phases). This sensitivity to mag-
netic structure is often complex since sampled events may exhibit a number of properties
(waves on boundaries, flux ropes, etc.) and is beyond the scope of the present chapter.
In the second part of this chapter, rather, a detailed study of configuration dependence is
discussed for a particular, important magnetic structure.

Over an orbit containing some configurational evolution, the two quality indicators
(V - B/|V x B| and §J/|J ay|) will exhibit individual error profiles, highly sensitive to
both the characteristic anisotropy and spatial scales of the magnetic structure sampled
and the geometry, relative orientation and relative size of the spacecraft configuration.
Figures 16.3 and 16.4 show examples of these sensitivities for the case of anticipated
Cluster situations in order to give a brief indication of the key results.

Referring back to the dayside orientation for the orbit shown in Figure 16.3, it should
be noted that many other evolutions will result for different starting configurations (here
chosen to be a regular tetrahedron at the northern cusp), but that the overall scale, within
this evolution, is set by the scale of the starting configuration.

Profiles for the two parameters are shown for two, similar choices for dayside phases
in the Figure 16.3. This plot shows variation against the true anomaly around the orbit,
with the evolution outside the magnetopause not shown and where the field is sampled
at the times over the orbit for each tetrahedral position. A nominal separation error of
5km and a measurement error of 0.1 nT in the field have been assumed (no component
error dependence is monitored for simplicity). The parameters monitor poor quality (large
values here) when error contributions are high. Features in the trends arise from a combi-
nation of the effect of local magnetic structure, the relative separation scale and the degree
of tetrahedral distortion. The effect of spacecraft configuration will be more apparent
when sampled structure does not vary too widely or is unimportant for the calculation of
V-B/|V x B| and 6J/|J 4|, the latter being true when the spacecraft configuration scale
is large relative to the model structure for instance (here Tsyganenko-87). Then the value
of V. B/|V x B]is large, however, and the estimate of | J y| is unphysical (§J/|J av| can
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Figure 16.3: Error profiles for V - B/|V x B| and §J/|Jay| for two cases of dayside
evolution, both with starting configurations at the northern cusp. The Tsyganenko model
is used as model of magnetic structure.
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Figure 16.4: Error profiles for the nightside evolution, starting configuration at the mag-
netotail crossing (T87 model).
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still be used as a quality estimate in this case).

In fact, in the context of the Cluster orbital configurations, it is only for the small
separations shown in Figure 16.3 (<1000km) that V - B/|V x B| remains small. Note
that, because of the different evolution in each dayside case, the details of profile are
different, but that, overall, the trends are similar, particularly the large deviation between
V-B/|V x B| and §J/|J 4v|: the physical coverage remains good, but measurement error
is bad as the spacecraft move away from the strong field region.

Key factors influencing the trends are the overall tetrahedral volume, the shape of the
configuration, the magnitude of B and the nature of the field curvature. These factors
combine to produce complicated dependencies and thus tetrahedral geometry alone is not
a good indicator for predicting the errors in these cases. The consistent trend to large
error in the plots for instance can be explained by the fact that the field magnitude varies
considerably; falling dramatically as the magnetopause is approached. Generally, for small
field intensities (and hence small differences between the spacecraft) the significance of
the error is enhanced. For strong curvature in B the value of V- B/|V x B| may also grow.
The peak at 30° in the left-hand plot, however, can be associated with extreme distortion
in the tetrahedral shape. Similarly, the profiles after 240° are very different between the
plots because the evolution is dramatically different (note that for the right-hand case the
configuration is elongated in the direction perpendicular to the plane of view).

Figure 16.4 shows two cases for the nightside phase, for which a regular tetrahedron
is set up close to the tail current sheet crossing. For these larger separations, while error
quality is higher overall, reflecting the less critical nature of the separation error, V - B
is now large (not shown for clarity). The evolution for the left-hand plot shows two clear
regions of severe distortion (as indicated by the insets, scaled by x10): one between 120°—
180° and one centred on 270°. These positions correspond to large errors in the current
estimate. Moreover, the current density peaks through the current sheet so that §J/|J ay|
is suppressed. The right-hand plot shows the orbit plotted in GSM coordinates. While,
clearly, the trends differ, in particular with regard to the positions of the peaks, the striking
feature is perhaps the similarity in profiles. In the right-hand plot the current sheet is
more clearly identified and the variation over the inner dayside magnetopause is smoother
since the cusp structure is not well sampled. The error peaks are still clearly identified
with extreme tetrahedral distortion, however; now with a double peak corresponding to
the positions ‘2" and ‘3’.

Thus, for these large configurations, the effect of magnetic structure in 6J/|J av| has
been reduced, so that Fs and Fp depend mainly on tetrahedral geometry. This is in contrast
to the dayside phases where the effect of the sampled magnetic structure masks the effect
of the tetrahedral geometry. The dependence of V-B and 6.J/|J ay| on tetrahedral geometry
is covered quantitatively in detail for specific model structure in the next section.

16.2.3 Analysis Technique

The preceding discussion has concentrated on issues most relating to the analysis of
in situ data (for which there is no a priori knowledge of magnetic structure) and results
in a conceptual method arising from the combined use of V « B and §J/|J 4| as quality
monitors relating to the curlometer technique. The use of V - B makes no distinction be-
tween those spatial gradients which contribute differently to V - B and V x B: there is
an assumption that the terms in V - B, as sampled, are as well represented, in combina-
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tion, as the gradient terms in V x B, or as poorly represented. The conceptual flow may
contain further interpretation (or assumption) of event properties, however, following an
initial analysis and combination of the data. This, of course, guides the application of the
technique. The evidence obtained from simple models (e.g. where the direction of V x B
does not change) is that V « B works well for indicating poor coverage for J, at least in
statistical sense. Such a technique has been designed and tested with a variety of simulated
situations and is briefly described below.

Although an estimate for the current density can always be made, the above discussion
suggests that two key areas of quality control can be pursued: the physical error, repre-
sented (crudely) by V - B/|V x B, and the measurement error, represented by §.J /| J qv .
The estimate of V - B itself separates the nature of the analysis which can be performed
on actual events. Even if V.- B/|V x B| is well behaved, measurement quality may not be
high for all components of J, and this must be monitored as part of the analysis. A poor
estimate of V- B/|V x B| indicates a possibly poor physical estimate of some components
of J, requiring further (independent) interpretation of the sampled structure (for example,
the size of the components of the gradient or stationarity properties). If V - B/|V x B] is
not well behaved, therefore, gradient analysis can still be performed on individual terms
in the dyadic VB and the time dependence of the event can be checked.

The technique has been used to investigate a number of simulated events using a variety
of magnetic structures. It is clear from this study that for strongly anisotropic structures,
having spatial scales at least of the order of the spatial scales of the spacecraft configu-
ration, the orientation of the configuration with respect to model is crucial as suggested
above. For some orientations the estimates show better coverage with distorted configura-
tions than for regular configurations when comparing the estimated J to the mean current
for the model.

16.3 Accuracy of Current Density Determination

16.3.1 Parameters Used to Define the Shape of a Tetrahedron

Chapter 13 is dedicated to the study of “quality factors” which could describe the shape
of a tetrahedron. In the past, the relationship between the accuracy of the current density
determination and the shape of the tetrahedron has been studied with various 1-D param-
eters. The main result was that there exist two categories of 1-D parameter: one which
attempts to describe the geometrical shape, and a second which is directly connected to
the relative accuracy of the measurement. This was a conclusion deduced from observation
and simulation, but not explained. Chapter 13 studies this observation, and has checked
the validity of the 1-D parameters. The main conclusion of that chapter is that the best
way to describe the shape of the tetrahedron, and understand what happens, is to use a 2-D
geometric factor, made up of two parameters, the elongation E and planarity P parameters,
which are deduced from the volumetric tensor (see Chapters 12 and 13).

Here we take again this method, and all parameters such as the total difference between
the estimated and the theoretical, mean |J| defined by the model, AJ/J (see precise
definition in Section 16.3.5), and parameters such as V- B and V x B will be studied in an
elongation-planarity (E-P) diagram, which allows us to characterise more precisely the
relationship between the shape of the tetrahedron and the accuracy of the estimate of the
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current density, and furthermore to understood why, in certain cases, the estimate of the
measurement is good, and why, in other cases, this estimate is bad.

16.3.2 Simulation Method

The following method has been used to check the possible relation between the shape
of the tetrahedron and the accuracy of the current density determination:

o firstly, we use a high number of tetrahedra, corresponding to several possible geo-
metric configurations, taken from a “configurations reservoir”;

e secondly, we use a model of current density structure, with a characteristic scale
larger than the size of the tetrahedron, such that all the vertices of the tetrahedron
are contained inside the current structure;

o thirdly, we add independent noise on the B magnetic components at the 4 spacecraft
positions (the four vertices of the tetrahedron) and we compute vector parameters
suchas V- B, V x B, and the relative error AJ/J on the determination of J.

16.3.3 The Tetrahedron Reservoir

The shape of the tetrahedron is characterised by the E- P parameter. We try to identify
a possible relationship between the value of these parameters and the accuracy of the
estimate of V x B and V - B. Firstly, to be sure that various kinds of tetrahedra are
taken into account, we use the “homogeneous tetrahedra reservoir” defined in 13.5.1 of
Chapter 13. This reservoir contains about 1000 tetrahedra and offers an homogeneous
coverage of the E-P plane. So, this reservoir contains a wide variety of configurations.
To avoid any bias, the tetrahedra taken from the reservoir are reprocessed as follows: (i)
they are computed in the barycentric coordinates, (ii) all the tetrahedra are normalised to
the same mean inter-spacecraft distance (D), (iii) their orientations are perturbed so as to
have a random orientation in space, and (iv) the position of the centre of each tetrahedron
is translated to —2500 km, in order to avoid the centre of the current structure which could
be a particular case.

16.3.4 The Current Structure Models

The goal is to simulate the crossing of a current structure by the Cluster constellation.
We have therefore to define a current structure model. The chosen model is described
in Figures 16.5 and 16.6: it consists of a cylindrical current tube, with an homogeneous
current density (Figure 16.5), or a Gaussian current density profile (Figure 16.6). In all
cases, we assume that the size of the Cluster tetrahedron is smaller than the size of the
current density structure, so that all the spacecraft are simultaneously located inside the
current density structure. Typical values are (D) = 1000km, R or ¢ = 5000km, J, =
10~8 amp/m?.

=16.1
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Figure 16.5: Current tube with homogeneous current density profile.
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Figure 16.6: Current tube with Gaussian current density profile.
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16.3.5 The Computationof Jand V - B

The uncertainty in the measurements of B (or the uncertainty in the restitution of the
spacecraft attitude) is simulated by adding a random noise on the 3 components of the 4
B, vectors. Similarly a random noise is added to the 4 r,, vectors describing the positions
of the 4 spacecraft. The amplitude A B of the noise added on the 4 magnetic field vectors
is independent of the components, and proportional to |B|. The uncertainty Ar in the
knowledge of the spacecraft position is taken to be proportional to (D), the average inter-
spacecraft distance. AB/B or Ar/r represent the relative accuracy in the determination
of By and r. The relative errors AB/B and Ar/r are defined as:

1 4
AB/B = AB/— B
/ /N;' ol

1 4
A = Ar/—
r/r r/N;m

Typical values for Ar/r are 1%, which correspond to the nominal values given by the
Cluster project. V-« B and J = V x B/ are computed from the perturbed simulated data
by the barycentric coordinates method, and we obtain an estimate of the J or V x B/u,
vector which is compared to the real value of the average of J at each vertex given by the
model. Although the uncertainty in the modulus and the direction of J have been studied,
we present here only the results corresponding to the modulus of J , that we note hereafter
J. Thus the relative accuracy of the estimate of J, AJ/J, can be estimated. The definition
of AJ/J is:
woAJ |Jestimated| _ |Jm0del|

AJ/J = |V X B|mode1 = |Jm0del| (16'4)

where |J ™°%!| is the mean value of the 4 |J;| values of the model at the 4 vertices of
the tetrahedron, and | J ©m3©d| s the estimate of |J| by the barycentric method, which
is equivalent with |J,,| used in Section 16.2. Of course, from Ampere’s law, and taking
into account the different kinds of errors, we note jio| J &imated| = |y x pjestimated [¢ hag
been shown that the errors AB/B or Ar/r have the same effect on the accuracy AJ/J.
Therefore, for the sake of simplicity, we will only consider the perturbation Ar/r. This
computation is made for all the tetrahedra taken from the reservoir defined in Chapter 13,
thus all the E-P plane is covered.

16.4 Results

16.4.1 Influence of the Shape of the Tetrahedron on the Relative Ac-
curacy AJ/J

First we consider an homogeneous current density profile, and therefore there is no er-
ror associated with the linear interpolation between the measurement made at the 4 space-
craft locations; only the uncertainties on the positions of the measurement points are taken
into account (Ar/r = 1%, AB/B = 0).
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The main results are shown in Figure 16.7, where we have plotted the relative accuracy
AJ/J in an E-P diagram. The size and the colours of the circles indicate the values of
AJ/J: for AJ/J = 0, the radius of the circle is just an invisible point, the largest circles
correspond to AJ/J > 10%. Note that there is no small circle hidden behind a large one,
the circles being sorted by size before plotting.

Adopting the five types of tetrahedra defined in Chapter 13 as description of shape, the
main conclusion is that for a large fraction of the diagram, corresponding to the “Pseudo-
Spheres type” and to a large fraction of the “Potatoes type”, the relative error AJ/J re-
mains below 2%. For values of the elongation or planarity parameter larger than about 0.6,
the errors reach 3% or more. For E or P > 0.9, which corresponds to a very long or a
very flat tetrahedron, the error can reach 10% and more, especially of course when both E
and P get of the order of unity. As a matter of fact, the error increases roughly with the

radius r = +/(E2 + P2), but this variation is not linear.

16.4.2 Influence of the Shape of the Tetrahedron on the Estimate of
V. B/|V x B|

Similar results are shown in the Figure 16.8, for V - B and V x B estimated from the
simulated measurement values. Notice that the current density profile being homogeneous,
the theoretical value of |V x Bj| is the same for all the points, and the |V x B]| estimated
values differs from the theoretical ones according the results of Figure 16.7 where AJ/J
is defined by equation 16.4 (see Section 16.3.5).

The theoretical value of V- B is obviously equal to zero. Since V- B is not a normalised
quantity, we have chosen to display the estimate of the ratio V - B/|V x B] rather than the
value of V - B. The colour code is the same as for AJ/J. Roughly speaking, the diagram
looks the same as for AJ/J, the “Pseudo-Spheres” and “Potatoes” types gives the lower
values of the divergence, and a large value of E or P leads to a large value of the estimated
divergence.

16.4.3 Relationship between AJ/J and V - B/|V x B|

Since the V - B/|V x B| diagram looks the same as the AJ/J diagram, one would
expect that the estimated ratio V - B/|V x B] is an estimate of the error AJ/J. This is
statistically true (see previous section), but a more careful investigation shows that there
is no one to one correspondence between the two diagrams; a large value of AJ/J can
correspond to a small value of V - B/|V x B| ratio, and vice versa: good estimates of J
can correspond to large value of the divergence (large V - B/|V x B| ). This is particularly
true for large values of E or P.

In order to reveal a possible relationship between AJ/J and V - B/|V x B|, we have
plotted these quantities in together in Figure 16.9. The colour code and the symbols corre-
spond to the family of the tetrahedra defined in Chapter 13 (circle for Pseudo-Spheres, hor-
izontal ellipsoid for Cigars, triangle for Pancakes, diamond for Knife Blade, and oblique
ellipsoid for Potatoes).

A possible relationship between these two parameter would result in the alignment of
the representative points. This is not observed; the distribution of the points has no pre-
ferred direction. Of course the area of the “Pseudo-Spheres” (round symbols) is restricted
to the central part of the diagram, close to zero, while the other types cover all the diagram.
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Figure 16.7: Influence of the shape of the tetrahedron on the estimate of | J|.
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Figure 16.9: Relationship between the error AJ/J and the ratio V - B/|V x Bj.

The non-existence of a correlation between V - B and AJ can be explained by the fact
that the computation of V - B and V x B involve different combinations of the compo-
nents of the dyadic VB. The divergence is obtained from the diagonal terms, while the
curl is built from the off-diagonal terms. These terms being perturbed by the addition of
an independent random noise on the 12 components defining the 4 spacecraft positions
to simulate the uncertainties on the measurement of these positions, the corresponding
errors on the gradient tensor are not dependent. Practically, if the errors on the various
components are effectively independent, it means that we cannot use the value of the es-
timated divergence to estimate the error AJ due to the measurement uncertainties. Thus,
for sampling “blind events”, the uncertainty on J can be calculated by equation 16.3 (see
Section 16.2). Moreover, this result means that a particular configuration shape (classi-
fied by E-P) does not alone absolutely order the measurement error, except statistically
(all orientations); the relative orientation to the magnetic structure also influences this (see
Section 13.2 on “Measurement Performance”, page 324).

16.4.4 Influence of the Current Direction on the Error AJ/J

In the present section, we investigate the possible influence of the direction of the
current with respect to the largest face of the tetrahedron on the errors. Figure 16.10 shows
the result: the relative error AJ/J is plotted versus the angle 6 between the direction of
the current and the normal to the main plane of the tetrahedron. The main plane of the
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Figure 16.10: Influence of the current density direction on the error AJ/J.

tetrahedron is defined as the plane containing the major and middle semiaxes of the inertial
ellipsoid, thus the normal to this plane is the minor semiaxis.

As defined in Section 16.4.3, a colour code and a symbol are used to separate the
different families of tetrahedra defined in Chapter 13. The “Pseudo-Spheres” have been
removed from the figure because the main plane has no meaning for a sphere. One could
expect to find in this diagram a relationship between AJ/J and 6, showing for instance
that the quality of the estimate would be better when the current is orthogonal to the main
plane. Examination of Figure 16.10 show that the (expected) minimum of AJ/J for
0 = 0° or & = 180° seems roughly clear. One can observe a slight tendency in the
case of the “Pancakes”, for which the main plane has of course the clearest meaning, but
this relationship is not very obvious because the distribution of the point in this diagram is
not homogeneous along the 6 axis, and there is not enough point near 6 = 0° or § = 180°
to get a clear-cut conclusion. Therefore, practically, it seems that the angle 6 plays a role
in the organisation of the diagram, and error AJ/J can be related to this angle, at least for
the particular model of an homogeneous current tube.

16.4.5 Heterogeneous Current Profile

The estimate of the current density inside the volume defined by the tetrahedron relies
on the assumption that the magnetic field varies linearly between two spacecraft. If the
current density profile is not homogeneous in space (as it is the case here), higher orders
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derivatives introduce a key source of errors in the estimate of V. x B and V « B. To
study its effect, we use a Gaussian shape for the current density profile, such as the one
shown in Figure 16.6, and define an heterogeneity factor 1 = (D)/o where (D) is the
mean inter-spacecraft distance and o is the root mean square deviation of the Gaussian. In
order to better illustrate the effect of heterogeneity of the profile, we hereafter neglect the
uncertainties AB/B and Ar/r which are set to zero.

Figure 16.11 shows the relationship between the shape of the tetrahedron, again de-
fined by the E and P parameters, and the accuracy AJ/J of the estimate, for a low value
of the heterogeneity factor.

The chosen value: h=0.1, being low, the profile of the current structure is not very
heterogeneous at the scale of the Cluster tetrahedron, thus the relative error AJ/J is very
low, except for large values of E or P. For large values of E and P we find a result similar
to the homogeneous case (but then with a relative error Ar/r of 1%, see Figure 16.7
before). As before, the error grows up rapidly as soon as the tetrahedron degenerates to a
very flat or a very elongated configuration. Increasing the heterogeneity factor, for instance
h=0.2 (Figure 16.12), leads to a rapid growth of the error AJ/J, but the conclusion about
the shape remains similar.

Nevertheless, it seems that the heterogeneous case is more sensitive to a flat or a linear
tetrahedron than the homogeneous case; in other words it seems that the errors due to
the linear interpolation are more sensitive for a non-regular tetrahedron that the errors
associated with uncertainty on Ar/r or AB/B. This is particularly true for the V. B/|V x
B| ratio. Figures 16.13 and 16.14 show the ratio V - B/|V x B] for h=0.1 and #=0.2.
Comparisons between Figures 16.13 and 16.14, and between Figures 16.11 and 16.12
show that V - B/|V x B| is more sensitive to the configuration than AJ/J. Since the
errors on V « B and |V x B]| are unrelated, the total error on the V - B/|V x B] ratio is
larger (no closely quantitative correspondence is anyway implied).

We have checked that the other conclusions, obtained in the homogeneous case, remain
the same in the heterogeneous case. In particular, Figures 16.9 and 16.10 look the same
with a finite low value of 4. Thus, even in the heterogeneous case, there is no point to
point correlation between AJ/J and V - B/|V x B|. The relationship between AJ/J and
the angle 6 is apparent, particularly near the limiting values 6 = 0° or & = 180°, with the
same restriction than the one for the homogeneous case.

16.5 Conclusions

The curlometer technique, for in situ measurements, uses two parameters to monitor
different quality aspects: V+ B/|V x B|and §J/|J 4v|. A large value of V - B, due to non-
linear dependence in the gradients contributing to V - B (assuming that the measurement
errors are weak regarding the physical error), may indicate that J is badly represented by
the data, unless the sampling is favourable. The sampling achieved arises from both the
configuration parameters (including relative orientation and scale) and the particular mag-
netic structure encountered (which defines the character of terms in the gradients matrix
of B). But, of course, when handling real data, we have to assume that J will be badly
measured, as indicated by V - B, until we know otherwise. In this regard, other analysis
techniques or model assumptions, which need to be checked for consistency, may be used
iteratively with the curlometer to improve understanding of an event. When V « B is small,
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Figure 16.11: Influence of the shape of the tetrahedron on the estimate of J for a low
degree of heterogeneity (h = 0.1).
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Figure 16.12: Same as Figure 16.11, but for a higher degree of heterogeneity (h = 0.2).
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Figure 16.14: Same as Figure 16.13, but for a higher degree of heterogeneity (h=0.2).
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we can assume that J remains statistically (and statistically only, see below the conclu-
sion about the relationship between V - B and 6J) well represented by the data unless the
measurement error contribution 8J/|J 4| (coming from 6 B and ér), to the error in J, is
large.

We therefore have two nearly independent parameters for the in situ monitoring: V - B
which may indicates a physical sampling error when the nonlinear terms dominate, and
8J/|J 4v| which identifies measurement accuracy. It should be understood that not all
situations are conducive to the technique and full analysis is performed by hierarchical
application of a number of different techniques.

A significant result from Section 16.2 is that V - B is large for the Cluster orbit phases
given, where the Cluster tetrahedron is moving into the Tsyganenko-87 magnetic field
model. The parameter §j/|J 4y | is smaller, overall, for the larger separations. This is more
or less as expected: J is physically better represented by the data when the tetrahedral
dimensions are small, but 6j/|J 4, | is smaller for large configurations, due to the combined
effects of larger field differences between the satellites and a small (~1%) relative error in
the separations. For the mission phases considered here, an optimum range of separation
scales, where both the physical estimate and the measurement accuracy remain good, does
not exist. The parameters show several instances where the physical coverage (roughly
represented by V - B) is insufficient to identify overall quality for the measurement.

To characterise the shape of the tetrahedron, as we have seen in Chapter 12 and 13,
the best way is to use the elongation and planarity parameters (E, P) defined and used in
Chapter 13 for the description of the shape. Its orientation in space is defined by the three
orthogonal vectors corresponding to the directions of the three axes of the pseudo-ellipsoid
computed from the volumetric tensor defined in Chapter 12. Vector ¢ corresponds to the
minor axis and is used for description of the orientation of the main face. By introducing
the E- P diagram to plot quantities such as the relative accuracy AJ/J or other interesting
quantities, we have a good tool to analyse the relationship between a scientific parameter
and the shape of the tetrahedron, for a given event model. In the same manner, by using
the 6 angle between the ¢ vector and the direction of the current, we can analyse the effect
of the orientation of the tetrahedron on the accuracy of the measurement.

The relationship between the shape of the tetrahedron and AJ/J has been shown by
a simulation of the crossing, by 4 spacecraft, of a particular current density structure. This
simulation allows an independent estimate of the effects of the various error sources, such
as uncertainties on the position of the spacecraft, on the magnetometer measurements,
and errors due to the spatial interpolation used for the computation of the various vector
gradients. The simulation gives the relative accuracy AJ/J of the measurement for all
variables. In particular, the accuracy AJ/J has been plotted in an (E-P) diagram, which
organises the results well and relates easily the shape of the tetrahedron to the accuracy
of the estimate of J or V - B. Furthermore, the E-P diagram is useful to get a quantita-
tive estimate of this influence, and to check whether a regular tetrahedron leads to a more
accurate estimate of J and V - B than the corresponding estimates for a distorted tetra-
hedron. Roughly speaking, the distance between the representative point and the origin is
proportional to the error on the accuracy of the estimate of both these quantities which,
statistically only, show the same trend (see below).

The conclusions are roughly the same for homogeneous and for heterogeneous cases,
but it seems that the error due to linear interpolation, in the heterogeneous case, is more
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sensitive to a non-regular tetrahedron than the errors due to a relative uncertainty Ar/r on
the positions. This is particularly true for the V- B/|V x B| ratio. In a future work, it would
be interesting to quantify the amplitude of the linearity errors versus the heterogeneity
parameter.

A potential relationship between V « B and A J has been studied in detail. Statistically,
the ratio V - B/|V x B| has the same behaviour as AJ/J, but on close inspection there is
no one to one correspondence. There are at least two reasons for this. Firstly, one reason is
obvious: since V«- B and V x B are computed from different terms of the dyadic VB used
by the barycentric method (see Chapters 14 and 15), and unless the errors are dependent
(this can be nevertheless the case for special structures), there is no point to point corre-
lation between the estimated V - B and the estimated V x B and therefore no correlation
between V - B/|V x B| and AJ/J. A second additional reason is that the orientation
of the tetrahedron in particular cases, associated with the particular current density struc-
ture used, plays a controlling role in this lack of correspondence which has to be more
explained. Thus, if the various contributions to measurement errors are independent or if
the nonlinear contributions to V - B and V x B are independent, then V - B should not be
used as a reliable estimate of the overall accuracy of the measurement of J. Nevertheless,
for straight current tubes, the statistical behaviour of V - B/|V x B| looks the same as
AJ/J, which gives justification of the use of V - B as an indication of the quality of the
physical coverage if the measurement errors can be neglected, or of the measurement error
if the current structure is homogeneous.

The influence of the direction of the current with respect to the orientation of the tetra-
hedron has been examined. Indeed, for a nearly flat tetrahedron, one would expect a
relationship between the angle 6 (defined as the angle between the direction of the current
and the normal to the main plane of the tetrahedron) and the AJ/J error. The simulation
shows that a relation exists, but the low number of points near 6 close to 0° or 180° leads
to a reserved conclusion. Other simulations are necessary to better clarify this relation,
and in particular to identify the behaviour in this context of the different type of tetrahedra
such as Pancakes, Knife Blades, Cigars, etc.

All these conclusions, of course, could be modified for another type of magnetic struc-
ture. The effect of different characteristic magnetic properties (events sampled) on mea-
surement performance needs to be investigated more thoroughly, particularly with regard
to anisotropic structure. Tools and simulations used in this chapter are well suited for such
an event study and should be performed in conjunction with other possible methods.
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