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13.1 Introduction

The geometrical shape of the tetrahedron formed by the spacecraft is an essential cri-

terion in the choice of scientific investigation which can be performed with data from a

multi-spacecraft mission, such as Cluster. The shape of this polyhedron evolves continu-

ously along the orbital trajectory of the spacecraft, and this shape has a major impact on

the accuracy of the determination of scientific parameters related to the spatial gradient,

such as the current density, which is discussed in Chapter 16. The scientific importance

of the shape, combined with its variability, inevitably led to many proposals for “quality

factors” to attempt to describe the geometric shape of the tetrahedron, or for “performance

indicators”, to indicate the likely error of a particular scientific parameter.

While these early geometric factors were all one-dimensional, 2-D parameters to char-

acterise the geometrical shape of the tetrahedron have also been proposed, i.e., the “elon-

gation” E and “planarity” P defined in terms of the eigenvalues of the volumetric tensor

described in Chapter 12.

In this chapter, we use the E and P parameters to define five characteristic types of

tetrahedra and we check the validity and the meaning of the 1-D geometric factors by a

numerical simulation using an “homogeneous reservoir of tetrahedra” in the E-P configu-

ration space. As a practical application, we present an example of the Cluster orbit, and the

associated computation of the 1-D and 2-D geometric factors. We represent these quan-

tities in the E-P diagram, which allows a better understanding of their meaning. Finally,

we demonstrate the limits of the 1-D geometric factors and point out the advantages of a

2-D geometric factor.
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13.2 Measurement Performance

Tetrahedral geometry is one of the principal factors affecting measurement perfor-

mance; that is the precision of physical parameters derived by comparison of data ac-

quired at four points in space. There are, in fact, three factors which affect this precision:

the tetrahedral geometry, the structure (in time and space) of the phenomena sampled, and

the inevitable experimental errors inherent to all physical measurements. Measurement

accuracy includes not only instrumental accuracy, but also timing and location accuracy.

As mentioned in the introduction, the treatment of errors is covered by Chapters 11, 16,

17, in terms of the determination of different sets of criteria for each physical parameter

to be determined. Different analysis techniques are appplied to four-point measurements

to derive different physical parameters, such as the local current density (involving spatial

field gradients), wave vector or mode, or global structure (boundaries). Each technique

imposes different criteria on adequate sampling for measurement quality. Each of these

criteria could be monitored separately, or given differing emphasis, depending on which

particular physical property is of interest.

Measurement quality is therefore not determined only by the geometric “quality” of

the tetrahedron (or polyhedron). Even for events which do not evolve structurally with

time, the sampling achieved of the physical event depends upon the geometry (and scale)

of the tetrahedron relative to that of the physical structure (anisotropy of the phenom-

ena) present. For a highly anisotropic physical structure, a particular alignment of an

anisotropic tetrahedral spacecraft configuration may be optimal, for example, to deter-

mine the spatial gradient. Different relative event scales, however, will result in different

measurement performance for any given tetrahedral size and shape. Multipoint analysis

typically involves the determination of gradients so that, for any given polyhedron over-

all size, derived quantities will, typically, be sensitive to the tetrahedral geometry when

sampling similar physical structures.

Measurement quality depends also on the size of the tetrahedron, compared to the

product of the measurement time resolution and the spacecraft relative velocity with re-

spect to the physical structure, i.e. the interval the spacecraft travel into the structure within

one data accumulation period. Note that for the particle experiments the data accumulation

period is typically equal to the spacecraft spin, so as to sample a complete 3-D distribution

function. In the case of Cluster this is 4 seconds, which determines the minimum size the

tetrahedron should have for the various spacecraft/physical-structure relative velocities.

Consider Figure 13.1, for example, which indicates the evolution of the spacecraft

configuration around a Cluster orbit for two proposed scenarios. Note how very different

the evolution is and how the geometry varies widely in shape and size over the orbit. The

insets show enlarged (by a factor of 50 with respect to the main figure) configurations,

projected into the plane of view. The first group of insets, at positions 1, 2, and 3, show a

highly elongated configuration at the southern magnetopause crossing (3). The orientation

of this can be changed (not simply) by changing the orientation at 1 and, for instance,

for some simulated mission phases has a more parallel alignment to the boundary. Faced

with such a predicted tetrahedral geometry, the physical parameters which can be well

determined depend upon the orientation with respect to the boundary. For such a nearly

1-D structure, techniques which determine those parameters depending on spatial structure

(gradients, such as for ∇ ×B or ∇ ×V ) will typically require a configuration aligned with

the boundary (i.e., matching the small and large gradients), but techniques which analyse
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Figure 13.1: Evolution of the Cluster configuration around the nominal orbit for the day-

side phase. The insets show two options which both target the northern cusp with a regular

tetrahedron, but target the southern cusp with a regular tetrahedron only for the second

case. The first option is optimised for fuel. [Reproduced from Balogh et al., 1997.]

macroscopic properties will benefit from an anisotropic configuration in different ways:

motional properties will be best sampled by perpendicular alignment, whereas boundary

shape (especially non-planar) is best sampled by parallel alignment.

A quality parameter that monitors only spacecraft configuration is particularly useful,

however, when sampling of structure is not important. Such a parameter would best reflect

performance relating to transient or fluctuating events, for instance, with no preferred ori-

entation to the global structure. A large number of events are not predictable and therefore

a regular tetrahedron is optimum in this situation. We call here a regular tetrahedron a

particular tetrahedron where the separations between each pair of points are equal. For the

second scenario in the figure, for instance, the target at 3 has been chosen to correspond

to a second, regular tetrahedron in an attempt to regulate the evolution over the orbit. The

effect of tetrahedral distortion in terms of geometric quality parameters is studied in detail

in the next section.

Optimum configurations in terms of either physical sampling or measurement uncer-

tainty, as discussed above, are only likely to be achieved over small segments of the orbit.

It would seem sensible, therefore, to attempt to optimise for data quality over selected

global regions, together with choice of spatial scale, as a primary constraint. For other re-

gions, use may be made of the natural distortion of the configuration to achieve preferred

orientations with respect to the sampled structure.

13.3 The Shape of the Tetrahedron

13.3.1 The 1-Dimensional Geometric Factors

Four points in space define a tetrahedron. If the separations between each pair of

points are equal, then it is a regular tetrahedron. Four spacecraft will form a tetrahedron,
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which in general will not be regular. How can we specify the degree to which regularity

is achieved? A number of parameters have been proposed to accomplish this, which we

present and compare below.

The QGM Parameter

The QGM parameter is defined as

QGM =
True Volume

Ideal Volume
+

True Surface

Ideal Surface
+ 1 (13.1)

The ideal volume and surface are calculated for a regular tetrahedron with a side length

equal to the average of the 6 distances between the 4 points.

QGM takes values between 1 and 3, and attempts to describe the “fractional dimen-

sion” of the tetrahedron: a value of 1 indicates that the four spacecraft are in a line, while

a value equal to 3 indicates that the tetrahedron is regular. There is nevertheless some

difficulty with this interpretation: it is perfectly possible to deform a regular (QGM = 3)

tetrahedron continuously until it resembles a straight line (QGM = 1) without it resem-

bling a plane at any time; therefore QGM = 2 is not a sufficient condition for planarity.

The QRR Parameter

The QRR parameter is defined to be

QRR =
(

9π

2
√

3
·

True Volume

Sphere Volume

)
1
3

(13.2)

where the sphere is that circumscribing the tetrahedron (all four points on its surface).

QRR is normalised to be equal to 1 for a regular tetrahedron; its minimum value is 0. This

parameter was selected from many on the basis of its usefulness in estimating the error in

the determination of the spatial gradient of the magnetic field. This is discussed in section

13.5.4.

The QSR Geometric Factor

Another of the 1-D parameters is known as the QSR geometric factor. This factor is

simply defined by:

QSR =
1

2

(

a + b + c

a
− 1

)

(13.3)

where a, b, c are the lengths of the 3 axes of the pseudo-ellipsoid (see section 13.3.2).

The QR8 Geometric Factor

Finally, another 1-D factor named QR8 is defined by:

QR8 =
True Volume

Ideal Volume
(13.4)

These 1-D geometric factors are studied in Section 13.4.3 in order to establish a rela-

tionship between their values and the type of the tetrahedra defined in Section 13.4.1. To

do this, we need to use a “reservoir of five types of tetrahedra” described in section 13.4.2.
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13.3.2 A Geometric Representation of the Size, Shape, and Orienta-

tion of a Polyhedron

Since none of these 1-D parameters is sufficient to characterise both the shape of the

tetrahedron and the accuracy of the J determination, we now introduce two parameters to

characterise the shape of the tetrahedron in a 2-D parameter space.

These two parameters are derived from the volumetric tensor introduced in Chapter 12

in connection with the determination of spatial grandients. It was shown in Chapter 15

that the linear barycentric and least squares methods of determining spatial gradients are

equivalent; therefore the volumetric tensor must contain all the relevant geometrical in-

formation needed to determine the spatial gradient by either of these two methods. This

suggests strongly that parameters which describe the volumetric tensor will be rather use-

ful in practice. It may also be noted that the volumetric tensor, and parameters derived

from it, are valid for a general polyhedron defined by four or more spacecraft.

The volumetric tensor is symmetric. A symmetric tensor describes a quadratic form

which can be represented by an ellipsoid in space; this ellipsoid has three principal axes,

each lying in the direction of one of the eigenvectors of the tensor, with semi-length deter-

mined by the corresponding an eigenvalue.

We recall here the definition of the tensor R, fully defined in Section 12.4 (page 315):

Rjk =
1

N

N
∑

α=1

(

rαj − rbj
)

(rαk − rbk) =
1

N

N
∑

α=1

rαj rαk − rbj rbk (13.5)

which is the component form of equation 12.23.

When N is the number of vertices (or spacecraft), rαj is the j component of vertex α,

and rbj is the mean value, over all α, of rαj . If the origin of coordinates is chosen to be the

mesocentre, then the tensor R can be written

Rjk =
1

N

N
∑

α=1

rαj rαk (13.6)

R is determined uniquely from the known orbital positions of the N spacecraft. It attempts

to describe the size and the anisotropy of the polyhedron (see Chapter 12).

The principle axes of the pseudo-ellipsoid are given by the eigenvectors R(n) of R. If

we order the eigenvalues as:

R(1) ≥ R(2) ≥ R(3) (13.7)

their square roots represent respectively the major, middle and minor semiaxes of the

pseudo-ellipsoid:

a =
√

R(1)

b =
√

R(2)

c =
√

R(3)

(13.8)

Thus, the volumetric tensor, and the associated ellipsoid, provide a simple way to vi-

sualise those features of the global shape of a polyhedron which are significant for the

determination of gradients. For instance, an ellipsoid reduced to a sphere corresponds to

a regular polyhedron, an ellipsoid reduced to a plane ellipse corresponds to the spacecraft

being coplanar, and an ellipsoid reduced to a line corresponds, of course, to the alignment
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of the spacecraft. The significance of the non-zero eigenvalues in the case of four space-

craft is explained in Section 12.4.3. Again considering only four spacecraft, it may be

noted that, even if the volumetric tensor were to be renormalised so that the spacecraft of a

regular tetrahedron actually lie on (the surface of) the sphere, for an arbitrary configuration

the spacecraft would generally not lie on the corresponding ellipsoid.

13.3.3 Size, Elongation, and Planarity of a Polyhedron

The discussion of the preceding section, and of Chapter 12, clearly demonstrates the

importance of the eigenvalues of the volumetric tensor with respect to both the description

of the polyhedron geometry and the calculation of spatial gradients.

Three parameters are needed to describe the three eigenvalues. It is useful for these pa-

rameters to be “intuitively descriptive”. One parameter may be used to indicate the size of

the polyhedron, and the other two, elongation and planarity, to describe its shape. Further-

more, in general (when it is anisotropic) two directions are required to define completely

the orientation in space of the polyhedron. The reasoning behind this choice of parameters

is as follows:

• When the polyhedron is isotropic, all three eigenvalues are equal.

• If it is stretched, a2 becomes greater than the other two eigenvalues; if stretched (or

rather, if squeezed in the two orthogonal directions) until b = c = 0, the spacecraft

would lie on a straight line. We define the elongation, or prolateness, to be E =
1 − (b/a). Furthermore, the eigenvector Ra defines the direction of elongation.

• On the other hand, if the isotropic polyhedron is squashed in one direction, c2 be-

comes smaller than the other two eigenvalues; if squashed until c = 0, the spacecraft

would lie in a plane. We define the planarity, or oblateness, to be P = 1 − (c/b).

Furthermore, the eigenvector Rc defines the normal (or pole) of planarity.

• In general the polyhedron is both stretched and squashed, in mutually orthogonal

directions. Together, the elongation and planarity define completely (the ratios of)

the eigenvalues, and thus the physically important characteristics of the shape of

the polyhedron. It remains to define a parameter to describe the size; it is conve-

nient to use the largest eigenvector, a2, which is always non-zero, and to define the

characteristic size as L = 2 a.

To summarise, the physically important characteristics of the polyhedron may be de-

scribed completely by:

• characteristic size L = 2 a (in any convenient unit of length)

• elongation E = 1 − (b/a) • direction of elongation Ra

• planarity P = 1 − (c/b) • normal of planarity Rc.

The direction of elongation and the normal of planarity are (by definition) orthogonal, and

so only three angles (e.g., the three Euler angles) are needed to describe completely the

orientation of the quasi-ellipsoid in three dimensions. These three angles, plus the values

of L, E and P , provide a complete description of the volumetric tensor. We may note that:
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Figure 13.2: The shape of the polyhedron as a function of E and P .

• both E and P are dimensionless, and lie in the range 0 ≤ E ≤ 1, 0 ≤ P ≤ 1;

• when E = 1, P is undefined because b = c = 0.

The shape of the polyhedron as E and P vary over their permitted ranges is indicated

in Figure 13.2. In Section 13.4.1, we will define a limited number of general shapes to

characterise the tetrahedra during the investigation of this chapter.

Note that we have defined elongation and planarity to be 1 − (b/a) and 1 − (c/b),

whereas the eccentricity of an ellipse is defined by e =
√

1 − (b/a)2. Now e lies in the

same range 0 ≤ e ≤ 1 as E and P , and the question arises as to whether elongation

and planarity would have been better defined as
√

1 − (b/a)2 and
√

1 − (c/b)2. Then

the elongation and planarity would be simply the eccentricities ec =
√

1 − (b/a)2 and

ea =
√

1 − (c/b)2 of the ellipsoid respectively in the plane of planarity (containing the

middle and major axes), and in the plane perpendicular to the elongation (containing its

minor and middle axes). Both definitions are acceptable, but the elongation and planarity

as defined above yield a more uniform distribution of points in the E-P plane. This point

is, of course, entirely subjective because there is no a priori uniform distribution; but the

statement is certainly true for typical Cluster orbits, as explained in Section 13.5.

Note that if no single parameter can reproduce all the information contained in the

volumetric tensor, the converse is also true: it is not possible to express analytically the

various 1-D geometric parameters in terms of the volumetric tensor, because this tensor

does not describe the tetrahedron completely. A complete description would require the

position of three of the apexes with respect to the fourth apex, that is, nine independent

quantities of which three describe orientation and six describe shape; the symmetric volu-

metric tensor has only six independent quantities, of which only three describe shape.
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13.4 Study of the 1-D Geometric Factors over the Tetra-

hedron Reservoir

We now restrict our attention again to the special case of the tetrahedron, and study

several 1-D geometric factors in terms of the parameters E and P .

13.4.1 The Five Types of Tetrahedra

It is useful to limit the number of characteristic tetrahedra given in Figure 13.2 and

to define only 5 representative types by means of the E and P parameters, Figure 13.3

shows where, in the E-P plane, each type of tetrahedron would be. For low values of E

and P we can define a “Pseudo-Sphere-shaped geometry” (bottom left corner of the E-P

diagram) corresponding to the pseudo-regular tetrahedra. For a high value of P and a low

value of E (top left corner of the E-P diagram) the ellipsoid is nearly a flat circle and we

can define it as “Pancake-shaped”. At the opposite side (bottom right corner) we can find

a long ellipsoid with a pseudo-circular section, that we can define as a “Cigar-shaped”.

Finally, at the top right corner, we can find tetrahedra which are both elongated and flat,

and we can call this type the “Knife-Blade-shaped”. Note that for elongated tetrahedron

the flatness does not have much physical significance. Tetrahedra that do not belong to

one of these categories or types, will be referred to “Potato type” and are located at the

centre of the E-P diagram. The tetrahedra which correspond to these 5 types shown in

Figure 13.3 are taken from a “five types reservoir” which is now defined.

13.4.2 Computation of a Reservoir of Five Types of Tetrahedra

Many tetrahedra corresponding to one or other of the five principal types shown in

Figure 13.3 have been constructed as explained below, and placed in a “reservoir”. Such

a reservoir is useful in simulations in order to study the consequences of each type of

configuration on the derived parameters (see Section 13.4.3). All the tetrahedra have the

same mean inter-spacecraft distance:

〈D〉 =
1

6

6
∑

α=1

dα (13.9)

When computing the reservoir we start with 〈D〉 = 1. The origin of coordinates of

each tetrahedron is initially the mesocentre, with the axes being in accordance with Fig-

ure 13.13.

Pseudo-Sphere. There are two components of this population:

• “Regular”, for which 〈D〉 is equal to each of the 6 inter-spacecraft distances

dα .

• “Random”. The major part of the “Pseudo-Sphere” population is produced by

perturbation of a regular tetrahedron, all three coordinates of each vertex suf-

fering separately a random “displacement” uniformly distributed in the range

±〈D〉 × 15%.
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Figure 13.3: The five types of tetrahedra: Pseudo-Spheres, Pancakes, Cigars, Knife

Blades, and Potatoes.

Cigar. This population is derived from the pseudo-spherical population by random elon-

gation in the z direction, in such way as to obtain the distribution shown in Fig-

ure 13.3.

Pancake. There are two basic forms of pancake population:

• “Triangular”, derived from a regular triangle in the xy plane (with the 4th

vertex taken at the mesocentre of the triangle);

• “Square ”, derived from a square in the xy plane.

In both cases, the three coordinates of each vertex are perturbed by a random amount

uniformly distributed in the range ±〈D〉 × 20%.

Knife Blade. This population contains three components:

• “Long Triangular” derived from the Triangular Pancake scaled in the x di-

rection by a random factor in a such way to obtain the distribution shown in

Figure 13.3;
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• “Long Rectangular”, derived from the Square Pancake scaled in the x direction

by a random factor.

• a “Long Diamond”, defined from a regular plane diamond in the xy plane,

where the position of each vertex is perturbed by a random noise with an am-

plitude of 〈D〉× 15% in a random direction for each cartesian component, and

then scaled in the x direction by a random factor.

Potatoes. This population is derived from the Pseudo-Sphere type by elongation in both

the x and z directions by different random factors in a such way to obtain the distri-

bution shown in Figure 13.3.

After computation of the nine populations of tetrahedra defined above, the coordinates

of each tetrahedron are computed with respect to its new (after perturbation of the ver-

tices) mesocentre coordinate system. Then each tetrahedron is scaled so as to have the

same mean inter-spacecraft distance 〈D〉; the value has been arbitrarily fixed at 1000 km.

Finally, to randomise the spatial orientation of the tetrahedra, essential if we want to study

the role of the tetrahedron direction, each tetrahedron is “shaken” in all directions, via

three successive plane rotations, where the three rotation angles θ, φ, β are uniform ran-

dom values.

To produce Figure 13.3, we have used a different number of tetrahedra for each type,

as follows:

Regular = 10

Pseudo-Sphere = 200

Pancake (Triangular) = 100

Pancake (Square) = 100

Knife Blades (Long Triangle) = 70

Knife Blades (Long Rectangle) = 70

Knife Blades (Long Diamond) = 70

Cigars = 200

Potatoes = 150

These numbers are chosen so that all five basic types contain about the same number of

tetrahedra (200 for Pseudo-Sphere, 200 for Pancake, 210 for Knife Blades, 200 for Cigars,

150 for Potatoes), except the perfectly regular (10). It is worth noting that the cigar-type

tetrahedra are largely over-represented; this must be taken into account in the simulations.

In fact, there is no a priori “uniform” distribution for the shapes of the tetrahedra; any

distribution which occurs in practice will be the result of a deliberate choice of orbital

parameters for the spacecraft concerned.

13.4.3 The 1-D Geometric Factors and the Types of Tetrahedra

To study how the main 1-D geometric factors behave for each the five types of tetrahe-

dra, we use the 5-types tetrahedra reservoir defined in Section 13.4.1. For each tetrahedron

of the five types studied, we have computed the main geometric factors (QGM , QRR , QSR ,

and QR8), together with the E and P parameters. The results are given in Figure 13.4,

where the x axis is the cumulative number of tetrahedra in each types. The total number of
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tetrahedra in each type is also indicated at the top of the figure. Note that the QGM factor

varies in the (1–3) range, and the others parameters varies in the (0–1) range.

The small “S” category is the perfectly regular tetrahedron (the true sphere type). This

type has been added, with a low number of tetrahedra, to verify that each 1-D parameter

give the maximal value of its range (3 for QGM , 1 for the other parameters, except of

course E and P ).

The Pseudo-Spheres type tetrahedra gives the expected result: the QGM , QRR , and

the QR8 factors gives effectively a value very close to 3 for QGM and 1 for the others.

Only the QSR parameter gives a value about 0.8, meaning that this kind of factor is very

sensitive to the low change of a regular tetrahedron. The E and P parameters give the

most real indication of the shape, in contrast to the 1-D parameters alone, and show, of

course, that the elongation and planarity have low values already visible on Figure 13.3.

As we will see, The E and P parameters will be obviously in accordance with the other

types. Nevertheless, one should not forget that E and P alone are not sufficient to describe

entirely the exact shape (see Chapter 12). They are only 2-D geometric parameters, and

can indicate the main characteristics of a given tetrahedron; however, very much better

that a single 1-D parameter.

The Pancake type tetrahedra gives a more complex result. The QGM factor gives the

expected result, a value very close to 2, with a small variance. The QSR factor gives a

value near 0.5. On the other hand, the QRR factor gives a value which varies from 0

to 0.7, the 0–0.4 part corresponding with the subtype of the triangular pancakes, and the

0.4–0.7 part corresponding to the subtype of square pancakes. The behaviour of the QR8

factor is the same, but reaches only a value of 0.5. For these last two factors, it is not

surprising, since these parameters are being computed from the circumscribing sphere, or

for the volume of the tetrahedron, so a flat or a line tetrahedron leads to an infinite radius

or a zero volume, and then a factor value near zero. Once again, one can separate the

geometric factors giving information on the shape, such as QGM or QSR , from those such

as QRR or QR8 giving information on the accuracy of the measurement, as we will see in

the next section and in Chapter 16.

The Knife Blades type gives also the broadly expected result. The QRR and the QR8

geometric factors give a value very near zero, while the QGM factor, and, in a minor part,

the QSR factor give a value near zero (1 for QGM ) but with a rather high variance, these

factors being probably more sensitive to the difference from an absolutely long and plane

tetrahedron.

The Cigars type gives result which may be surprising, but can be easily understood.

The QGM factor, in fact, does not make a large distinction between a cigar or a knife blade,

because in the two cases the tetrahedron is long, and then give a “fractional dimension” in

the range (1–2), with a high proportion close to 1. It is the same case for the QSR factor,

which yields very similar result with the cigars type and the knife blade type, with a lower

variance. This phenomena will be studied in details on the next section.

The “Potatoes type” gives the expected results, since the potato is an undefined shape,

between the other well identified types, and gives values about 2.3 for QGM factor (0.65

if we normalise QGM in the 0–1 range) and about 0.5 for the others.

In conclusion, the study of the 1-D geometric factors with the 5-types of tetrahedra

is limited, since the results are not surprising, although this kind of study allows us to be

precise about the behaviour of these 1-D geometric factors with characteristic tetrahedra.
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13.5 Study of the 1-D Geometric Factors with the E-P Pa-

rameters

The method used to study the meaning of the 1-D geometric factors is to plot the value

of these parameters on a E-P diagram. To do that, we need a “homogeneous tetrahedron

reservoir”, whose the E and P values must cover all the E-P plane. Then, for each

of these tetrahedra, the values of the QGM , QRR , QSR , and QR8 geometric factors are

plotted on the E-P diagram. This highlights the significance and limitations of this kind

of 1-D parameter.

13.5.1 Computing an Homogeneous Tetrahedra Reservoir

The method used to compute an homogeneous tetrahedra reservoir is explained below.

Firstly, we take tetrahedra corresponding to the 9 basic forms used in Section 13.4.2.

For each basic form, Ni tetrahedra are chosen in category i, we perturb (always in the

mesocentre coordinate system) each vertex of the tetrahedra by a random noise with an

amplitude of 〈D〉×10%. Then, we define a grid of 0.1 steps in the E-P plane and decom-

pose the E-P plane in 100 regular squares of 0.1 unit for each side. We also compute the

E and P parameters for each tetrahedron, and determine the corresponding square in the

E-P plane.

Secondly, we begin again this process as many time as it is necessary (with a maximum

of 10 times) so that each square of the E-P plane contains about 10 tetrahedra.

Finally, to avoid a bias, all the tetrahedra have the same mean inter-spacecraft distance

〈D〉, arbitrarily fixed at 1000 km. The final result is a reservoir of about 1000 tetrahedra

(ten per regular square of the 10 × 10 grid).

Figure 13.5 shows the result, and we can see that there is indeed an homogeneous

distribution of representative points in the E-P plane. To make this reservoir, we used

numbers of tetrahedra, deduced from each basic forms, as follows:

Regular = 10

Pseudo-Spheres = 300

Pancakes (Triangular) = 150

Pancakes (Square) = 150

Knife Blades (Long Triangle) = 150

Knife Blades (Long Rectangle) = 150

Knife Blades (Long Diamond) = 150

Cigars = 300

Potatoes = 300

13.5.2 Cluster Orbit Tetrahedron in a Time Diagram

The more usual representation of the orbit of 4 spacecraft is a plot of the position of

each spacecraft, and many other parameters, versus time. In Figure 13.6, we have plotted,

for a typical Cluster orbit, and over one orbit, from top to bottom:

• the four geocentric distances,
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Figure 13.5: The tetrahedra reservoir used in the paper. Notice the homogeneous coverage

of the E-P plane.

• the six inter-spacecraft distances,

• the volume of tetrahedron,

• the 3 geometric factors Q′
GM , QRR , QSR (note that Q′

GM factor is equal to (QGM −
1)/2 to have the same range (0–1) that the others parameters),

• the 3 semiaxes of the ellipsoid, a, b, c,

• the E and P parameters.

The orbit has been given by ESA [Schœnmækers, private communication], and was

established initially on the basis of a launch in November 1995. Although the launch and

the Cluster mission are delayed (failure launch of Ariane 501), the arguments remain the

same. Regarding the geocentric distance, the spacecraft seem close to each other, and

the four geocentric distances are superposed on the figure. One can see however that the

inter-spacecraft distances vary in high proportions, and thus the shape of the tetrahedron

has a strong variation along one orbit. In particular, the volume of the tetrahedron can

reach a value very close to zero twice (at 26:30 UT and 33:10). This explains that, as we

can see in Figure 13.6, the QRR geometric factor is very close to zero, and the Q′
GM and

QSR reach a low value, as we have seen in preceding section. Since the minor semiaxis

c of the ellipsoid is also equal to zero at these points and the middle semiaxis b has a

non-zero value, the tetrahedra is fully flat (planarity parameter equal to 1, and elongation

takes any value). Two other particular points can be observed, namely at 18:30 and 38:45,

when b = a, and thus E = 0, corresponding to a regular sphere “flattened” in a single
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Figure 13.6: The main Cluster orbit parameters, and the 1-D and 2-D associated geometric

factors, for a typical orbit of December 24, 1995 (data provided by ESA).
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direction. Finally, Schœnmækers has shown that we can have two points in the orbit where

the tetrahedron is regular. We find the first point at 22:30 where P = 0 and E have a low

value. The second point is in fact a small duration in the interval [37:30–38:45] where

P = 0 and E has a low value and then, after a short time, where P has a low value and

E = 0. In both cases, these points can be rapidly found by examining Q′
GM and QRR

which reach the maximum value of 1, corresponding to a regular tetrahedron. As we have

seen, the QSR value has a maximum value less than 1, this parameter being very sensitive

to the difference to a perfect tetrahedron.

This kind of figure can gives a good indication on the shape of the tetrahedron during

the orbit of the for spacecraft.

13.5.3 Cluster Orbit Tetrahedron in the E-P Diagram

In order to characterise quickly the shape of the Cluster tetrahedron along one orbit,

rather than plotting the tetrahedron characteristics with time as done in previous section,

another way is to plot an hodogram of the successive positions of the tetrahedron in a E-P

diagram. In Figures 13.7 and 13.8, the shape of the Cluster tetrahedron is computed and

plotted in the E-P diagram along a whole orbit. The time step is 6 minutes, and the arrow

indicates the direction of the motion. The apogee corresponds to the portion of the figure

where the different points are very close together, the velocity being low and the shape

slowly varying. The perigee corresponds to the portion of the figure where the points are

widely spaced, because the spacecraft velocity along the average trajectory is large.

In Figure 13.7 (December 24, 1995), as we have seen in the preceding section, the

tetrahedron is regular at 2 points along the orbit, the first point being located near (E, P ) =
(0.28, 0.01), and the second point is in fact a short period, from (E, P ) = (0.21, 0.01) to

(E, P ) = (0.01, 0.16). These two points where the tetrahedron is regular are, of course,

located in the region of the Pseudo-Spheres type (see Figure 13.4). During the rest of the

curve, the E-P parameters can take extreme values. In particular, as we have seen before,

the tetrahedron is absolutely flat (P =0.99) for 2 points along the orbit, but never completely

linear (the maximum value of E is 0.8 near the perigee). For another example orbit shown

in Figure 13.8 (June 24, 1996) the conclusions remain the same. During the course of the

Cluster mission, all possible shapes of tetrahedra are expected, and thus, simulations must

take into account any possible value in the E-P plane. Thus, the homogeneous reservoir

will be used for the following 2-D simulations.

13.5.4 E-P Diagram for 1-D Geometric Factors

The idea is the same as that in the previous section on the shape of the tetrahedron

along the orbit. In Section 13.4.3, we have studied the geometric factors among the 5

types of tetrahedra defined in 13.4.1. To have a more precise idea of what the different 1-D

geometric factors studied mean, we have used the homogeneous reservoir of tetrahedron

defined in Section 13.5.1 to compute the values of these 1-D parameters in the E-P plane.

This presentation has an important advantage: by examination of the values of these 1-D

geometrical parameters in the E-P diagram, we can directly correlate the value of the 1-D

geometric factors to the shape of the tetrahedron which is very best defined by the E and P

parameters, although, as we have already say, E and P are themselves an approximation

of the exact shape.
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Figure 13.7: Evolution of the shape of the Cluster tetrahedron along its trajectory in a E-P

diagram for December 24, 1995 (data provided by ESA).
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Figure 13.8: Evolution of the shape of the Cluster tetrahedron along its trajectory in a E-P

diagram for June 24, 1996 (data provided by ESA).
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The QGM and QRR Geometric Factors

The results are shown in Figures 13.9 and 13.10, where we have plotted in the E-P

plane the values of the QGM geometric factor (Figure 13.9) and the QRR geometric factor

(Figure 13.10). The size and the colour of the circles corresponds to the values of the

geometric factors according to the legend given vertically on the right of each figure. At a

first glance, there is an important difference between the distribution of the values of these

factors in the E-P plane. Near the origin, for the low values of E and P (“Pseudo-Spheres

type”), there is a similar behaviour of the two geometric factors, but, for high values of

E and P , we have a difference. From the QGM factor, we can see an illustration of the

fact that the P parameter becomes undefined when E is near 1 (see Section 13.3.3). In

Section 13.4.3 we interpreted the meaning of QGM as the “fractional dimension” of the

tetrahedron, but this kind of diagram reveals a fundamental question: does the fractional

dimension exist? If we cover the sides of the E-P plane from the (0, 0) origin in the

clockwise direction and having in mind the Figure 13.3 describing the five types of tetra-

hedron, from the “Pseudo-Spheres” type to the “Pancake” type, and then to the “Knife

Blades type” and the “Cigars type”, the QGM value varies from 3 to 2 and then to 1 for

these 4 types, corresponding to the concept of a “fractional dimension”. There is no dif-

ference between a “Knife Blade” and a “Cigar”, both being considered as a line shape of

dimension near 1. If we consider however the transition between the “Cigars type” (D=1)

and the “Pseudo-Spheres type” (D=3) to finish the clockwise tour, we reach now a fun-

damental problem about the “fractional dimension”. These two shapes are in fact very

similar since the Cigars are deduced from the Pseudo-Spheres by a strong elongation in

an arbitrary direction (13.4.2), and the transition between these two shapes from dimen-

sion D=1 to dimension D=3 has to pass by the value of D=2 which, in this case, does not

correspond to a plane because the planarity P is near zero. In others words, a value of

QGM equal to 2 does not imply a flat tetrahedron; it could also correspond to a rather long

cigar with a rounded section. On the other hand, the fact that the QGM factor does not

distinguish between Knife Blade and Cigars (both being considered as a long tetrahedron)

cannot be essential, because this distinction becomes impossible near E = 1. In conclu-

sion, the QGM geometric factor remains a good alternative to describe, in the strong limit

of a single 1-D parameter, the geometrical shape of a tetrahedron, particularly in the ex-

treme “pancake” region, although the concept of fractional dimension must be taken with

care.

Concerning the QRR geometric factor (Figure 13.10), the result is fully different for the

high values of E and P . The isovalues of this factor (not plotted here, but easily guessed)

are roughly decreasing with the radius r =
√

E2 + P 2. This factor is not directly con-

nected to the geometric shape of the tetrahedron, because a Pancake type tetrahedron, a

Knife Blade type, and a Cigar type lead approximately to the same value for QRR . Never-

theless, this kind of parameter is rather well connected to the relative error measurement of

physical parameters such as ∇ × B for which a regular tetrahedron is often the best shape

to minimise the measurement errors (at least for isotropic signature, see also Chapter 16).

This property is easily explained by examining Figure 13.10. In fact, this parameter has

minimum values near E = 1 and P = 1, and particularly in the region where we have

simultaneously E and P close to 1 (Knife Blades). Thus the QRR factor can be seen as

an expression of the degeneration of the tetrahedron (i.e., when E or P are close to 1),

and so can be used as a real geometric factor for the physical determination of scientific
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Figure 13.9: Plot in the E-P diagram of the QGM geometric factor.
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Figure 13.11: Plot in the E-P diagram of QSR geometric factor.
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parameters which prefer a regular tetrahedron.

Nevertheless, for further studies, we can also define directly the degeneration of a

tetrahedron as, for example, d =
√

E2 + P 2, or something of the same kind.

The QSR and QR8 Geometric Factors

Many 1-D geometric factors have been studied by examination of their values in the

E-P diagram. In fact, we can find a lot of factors for which the E-P diagram looks the

same as the two “preferred” QGM and QRR geometric factors. We present here only

the QSR and the QR8 geometric factors defined in Section 13.3.1 and already studied in

Section 13.4.3.

The E-P diagram for the QSR factor is very similar to that of the QGM factor, as we

can see in Figure 13.11. Nevertheless, there is a difference near the low values of E and

P (see Section 13.4.3), where the QSR factor decrease very rapidly as soon as the E or P

values are not close to zero, thus confirming the “sensitivity” of this geometric factor to a

small deviation from a perfectly regular tetrahedron. Except for this difference, however,

the main conclusion is the same as for the QGM geometric factor.

Concerning the QR8 geometric factor (see Figure 13.12), apart from a much smoother

transition, the E-P diagram of this geometric factor is very similar to the QRR one, con-

firming the fact that the normalised volume is a good indicator of the degree of “degener-

ation” of a tetrahedron.

13.6 Conclusions

The pseudo-ellipsoid, derived from the volumetric tensor of in Section 12.4.1, provides

a useful and simple approach to characterise the shape of a tetrahedron, and its orientation

in space. The E and P parameters allow an appropriate and easy-to-use description of

this shape, and has been used to define 5 main types of tetrahedra: “Pseudo-Spheres”,

“Pancakes”, “Knife Blades”, “Cigars”, and “Potatoes”. These E and P parameters are

used to define a 2-D geometric factor, which is a very efficient way to describe the shape

and the deviation to a regular tetrahedron rather than a single 1-D geometric factor, even

if it is as best as possible.

The definition of the 5 types of tetrahedron, and the making of a corresponding “reser-

voir of five type”, has allowed us to study the response of the main 1-D geometric factors

with respect to each type of tetrahedron.

On the other hand, the evolution of the shape of the tetrahedron along a typical Cluster

orbit has been studied in a time diagram. By considering the different 1-D geometric

factors, the length of the axes of the pseudo-ellipsoid, and the E and P parameters, we can

obtain a good description of the evolution of this shape. But the introduction of the E-P

diagram to plot, for instance, this orbit can give good information directly on the distortion

of the tetrahedron, and its evolution. Notice that in a real case, such as the Cluster orbit,

the E-P plane is well covered, and so all the values of E and P must be taken into account

in any simulation.

The making of an homogeneous reservoir of tetrahedra in the E-P plane allows us to

check the validity, meaning, and limits of the main 1-D geometric factors. Factors such

as the QGM or QSR factors yield information on the geometrical shape, but, of course,
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incompletely because of the strong limitation in single scalar values. On the other hand, the

E-P diagram is not compatible with the notion of “fractional dimension” which remains

an interesting concept but which has to be precisely defined. Other factors, such as the

QRR factors and others, do not give real or direct information on the geometrical shape,

but can be considered as the degree of degeneration of the tetrahedron and so are well

related to the uncertainties in the determination of some physical parameters which prefer

a regular tetrahedron.

To conclude, this study is based on the idea that a regular tetrahedron is the ideal

form for good geometric measurements, but we do not forget that for special studies (for

example, a boundary crossing) an alignment of the four points can be considered as the

best form. Furthermore, for actual sampling of phenomena, we need to identify the relative

scale and the orientation in space of the tetrahedron, which requires not only the knowledge

of the length of the axes of the ellipsoid, but also their directions. When this information

is unknown or is unimportant (as for an isotropic structure), since a single 1-D parameter

is not sufficient to describe in a single scalar value the real shape of the tetrahedron, the

use of a 2-D factor such as the E-P plane remains essential.

Appendix

13.A Calculation of Geometric Factors QGM and QRR

To calculate the geometric factors of equations 13.1 and 13.2, we need to study the ge-

ometrical properties of a tetrahedron. We consider the tetrahedron defined by four points in

space numbered 1 to 4, with position vectors r1, r2, r3, r4. Without any loss of generality,

we may consider only the differences dα = rα − r4 in describing the points.

Area of the Sides

The area of a parallelogram bounded by two vectors d1 and d2 is given by the magni-

tude of their cross product; any triangle is half of a parallelogram, so its area is

S =
1

2
|d1 × d2|

where d1 and d2 are the vectors for any two sides of the triangle.

We specify side α of the tetrahedron to be the one opposite vertex α: that is, it does

not contain the point α.

S1 =
1

2
|d2 × d3| , S2 =

1

2
|d1 × d3| , S3 =

1

2
|d1 × d2|

S4 =
1

2
|(d2 − d1) × (d3 − d1)| =

1

2
|d1×d2 + d2×d3 + d3×d1| (13.10)

The total surface S is the sum
∑4

α=1 Sα .
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Volume

The volume of a parallelepiped defined by three vectors in space is the triple product

of those vectors. Any tetrahedron is 1/6 of such a figure, hence

V =
1

6
|d1 · d2 × d3| =

1

6

∣

∣

∣

∣

∣

∣

d1x d1y d1z

d2x d2y d2z

d3x d3y d3z

∣

∣

∣

∣

∣

∣

(13.11)

Centre of the Circumscribing Sphere

To find the circumscribed sphere, we need the point that is equidistant from all four

vertices, i.e., we want r such that

(r − rα) · (r − rα) = r2 − 2r · rα + |rα|2 = ρ2; ∀ α = 1, 4

If we take point 4 as the origin, that is, if we use the dα vectors in place of the rα , then

r2 = ρ2, the sphere radius, and this equation reduces to

2r · dα = |dα|2 ∀ α = 1, 3

This matrix equation for the centre of the sphere can be solved for the vector r and the

radius of the sphere ρ2 = |r|2. Note that the matrix {dα} in this equation is the same

as the one whose determinant yields the volume of the tetrahedron (equation 13.11). The

volume of the circumscribed sphere is then

V◦ =
4

3
πρ3 (13.12)

The Regular Tetrahedron

The regular tetrahedron of unit side is the ideal against which the true figure of the four

spacecraft is to be measured. We may take (Figure 13.13)

d1 = (1, 0, 0)

d2 =

(

1

2
,

√
3

2
, 0

)

d3 =

(

1

2
,

√
3

6
,

√
6

3

)

d4 = (0, 0, 0)

Values for the regular tetrahedron of unit side length are listed in Table 13.1.

The Geometric Factors QGM and QRR

From the above quantities, it is easy to calculate QGM and QRR .

For QGM , we average the 6 distances between the 4 points to get the side L of

the “ideal” regular tetrahedron, with volume Videal = L3
√

2/12 and surface Sideal =
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Figure 13.13: Conventions used to define a regular tetrahedron (1,2,3,4 correspond to the

spacecraft position).

Table 13.1: Values for regular tetrahedron

Quantity Value

Sα =
√

3/4

S =
√

3

V =
√

2/12

ρ =
√

6/4

V◦ = 4
3
π
(

3
8

)
3
2

L2
√

3. The true volume V and true surface S are found from equations 13.11 and 13.10.

Then we can express QGM as:

QGM =
V

Videal
+

S

Sideal
+ 1 (13.13)

For QRR , the radius of the circumscribing sphere is calculated from equation 13.12.

The actual volume of the sphere need not be calculated, for all the factors just go into the

normalisation factor N .

QRR =

(

9
√

3

8
V

)
1
3

· ρ−1 (13.14)
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