
1.  Introduction
The four CLUSTER S/C have continuously provided excellent data for 20 years, and these data are carefully 
archived regularly at the Cluster Science Archive (CSA) of ESA (Laakso et al., 2010). This huge database con-
tains, among other things, the data from the FGM magnetometer (Balogh et al., 1993, 1997; Dunlop et al., 2002). 
These data are used here to observe the average behavior of the magnetic field around the Earth, notably inside 
the magnetosphere.

In the GSM frame, the form of the mean magnetic field is driven mainly by the value of the dipole tilt angle. The 
values of the field can be distributed in spatial grids, dependent on this angle. For the purpose here we also do not 
separate any dependence on either geomagnetic or external conditions (solar wind and interplanetary magnetic 
field). This can be explored in principle with the database in future work. To do this, we make spatial average in 
each cell of the grid, and then obtain temporal averages over the 20 years of measurements. Of course, this proce-
dure erases transient effects on short temporal scales, but we obtain the value of the averaged experimental field 
in an extended spatial volume, which is not without interest. As CLUSTER allows access to spatial gradients, 
giving quantities such as curl(B) and div(B), we calculate the linear approximation to these quantities for all the 
available values of B, and we set up a large database of curl(B) and div(B) covering the same 20 years. Average 
3-D grids of these quantities can be calculated, and the production of various maps of averaged �⃗  in magnitude 
and direction, allows us to observe the global behavior of the currents.

2.  Data Access and Processing
All FGM data used in this paper were downloaded from the CSA (Laakso et al., 2010) in CEF format (Allen 
et al., 2004), as well as all satellite position data. The FGM data used are those having ”spin resolution”, at around 
4 s. Over the 19 years taken into account, 27,794 cef files have been downloaded for a total size of 45.5 GB. In 
order to be able to process them more efficiently these files are converted in binary format, without header and 
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containing both magnetic field and positions. This base will be called hereafter ’FGM_POS_database’. Its size 
is 28.4 GB.

To calculate rotational and divergence, it is necessary to have the four measurements of �⃗�� and the four positions 
�⃗�� measured on the same timeline (i = 1,3 j = 1,4). It is therefore necessary to interpolate the values of the field, 
and to bring them back to the same common time. The same operation must be done with the position data, to 
synchronise them to the same timeline as the magnetic field. So we have established a ’spin resolution time-
aligned database’ with the same time stamp for the four satellites, in field and in position, and this is for 19 years 
of data (2001–2019 included). This base, whose size is ∼28 GB, will be called hereafter ‘FGM_POS_aligned_
database’. The twentieth year of data can be added when available from the CSA.

Figure 1 displays the cumulative point count of each cell in a high resolution data grid (0.25 RE), in XY, XZ and 
YZ planes. Total number of tetrahedra is ∼150 million into the cube, that is, 600 million of measured �⃗ vectors. 
Superimposed on these maps, the bow shock is plotted (Rodriguez-Canabal et al., 1993). The limit of the closed 
field lines, computed as described in a later Section 5.1, is also drawn as a simple geometric indication. It is not 
exactly the magnetopause, but gives a rough approximation of it, and is time-independent as the averaged data.

3.  Observation of Averaged Magnetic Field
From the binary FGM_POS_database, we computed the averaged magnetic field in a 3D grid of 0.25 RE spatial 
resolution, for various dipole tilt angles θ. The magnitude of the field is shown in a planar cut such as meridian 
or equatorial plane by a color code. As previously the bow shock is plotted, as well as the limit of the closed field 
lines. As an example of the database output Figure 2 shows the magnitude of the DC field in the meridian plane 
(top), for θ = −10° (winter in Northern hemisphere) and θ = +10° (summer in Northern hemisphere). The mag-
nitude decreases like a dipole, with a sudden drop beyond the bow shock, and the magnitude in the tail is weak, 
as expected. Bottom of Figure 2 shows the same output but in the equatorial plane. Note that in the equatorial 
plane the dawn side is observed at positive tilt angles and the dusk one at negative. To plot the direction, we first 
reduce the spatial resolution of the grid to 0.5 RE, and the direction is indicated by an arrow in each cell. Figure 3 
show the �⃗ direction in the XZ GSM meridian plane, for θ = 0. We can see a smooth and constant direction in the 
magnetosphere and a variable one in the magnetosheath and solar wind. We will see later in Section 5.2 how we 
use this data grid to draw magnetic field lines.

4.  Computation of Current Density
To compute the electric current density, we use the FGM_POS_aligned_database of Section 2. In this database, 
we calculated ∇⃗ × �⃗ and ∇⃗ ⋅ �⃗ , for each time stamp, without any particular selection of the data for quality (this 
will be done later). This is carried out for each of ∼150 million tetrahedra of the database, contained in the 6,948 

Figure 1.  Cumulative number of points in a high resolution data grid (0.25 RE), in XY, XZ and YZ planes (log scale).



Journal of Geophysical Research: Space Physics

ROBERT AND DUNLOP

10.1029/2021JA029837

3 of 12

daily files, and results are written in a binary file containing date/time, fields and position of each S/C, curl and 
div of B, as well as elongation and planarity parameters (Robert, Roux, et al., 1998), and dipole tilt angle. This 
new data base is called ’Curl_Div_database’ and it size is 53.2 GB. Note that we have 3 versions of this database: 
one from original �⃗ , one with dipole magnetic field subtraction, and one with IGRF magnetic field subtraction.

4.1.  Computation Method

The calculation method used for the estimation of curl(B) is that of the classical method of contour integrals on 
each face of the tetrahedron, by applying Ampere's law on each face:

Figure 2.  Average of the magnitude of the magnetic field over 20 years in GSM system, for a dipole tilt angle θ = −10° ± 5° (left) and θ = 10° ± 5° (right). Top: XZ 
meridian plane, bottom: XY equatorial plane.
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∮
⃖⃖⃗𝐵𝐵(𝑀𝑀).⃖⃖⃖⃗𝑑𝑑𝑑𝑑 = 𝜇𝜇0.𝐼𝐼�

To apply this formula to a tetrahedron, consider the face formed by vertices 
(i,j,k). Following the linearity assumption of B, the field between the space-
craft i and j can be expressed by:

�⃗�� = �⃗� + (�⃗� − �⃗�)�∕����

where Lij is the distance between spacecraft i and j.

So for the line ij we have:

∫

𝐿𝐿𝑖𝑖𝑖𝑖

0

⃖⃖⃗𝐵𝐵𝑖𝑖𝑖𝑖(𝑙𝑙) ⋅ d⃗𝑙𝑙 = ⃖⃖⃗𝐵𝐵𝑗𝑗 + (⃖⃖⃗𝐵𝐵𝑗𝑗 − ⃖⃖⃗𝐵𝐵𝑖𝑖)∫

𝐿𝐿𝑖𝑖𝑖𝑖

0
𝑙𝑙d⃗𝑙𝑙∕𝐿𝐿𝑖𝑖𝑖𝑖 = (⃖⃖⃗𝐵𝐵𝑖𝑖 + ⃖⃖⃗𝐵𝐵𝑗𝑗) ⋅ 𝐿𝐿𝑖𝑖𝑖𝑖∕2�

By noting the result Sij, and by doing the same thing for the 3 lines of the 
(i,j,k) triangle, we obtain:

𝜇𝜇0.𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑖𝑖𝑖𝑖 + 𝑆𝑆𝑗𝑗𝑗𝑗 + 𝑆𝑆𝑘𝑘𝑘𝑘 and so we have 𝐽𝐽𝑖𝑖𝑖𝑖𝑖𝑖 = (𝑆𝑆𝑖𝑖𝑖𝑖 + 𝑆𝑆𝑗𝑗𝑗𝑗 + 𝑆𝑆𝑘𝑘𝑘𝑘)∕(𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝜇𝜇0)�

where Aijk is the aera of the (i,j,k) triangle.

To calculate the density vector 𝐴𝐴 ⃖⃗𝑗𝑗 , one chooses three faces among the four, and therefore we obtain three com-
ponents of �⃗  in a non-orthogonal coordinate system. If the tetrahedron is not flat, one carries out the passage in 
an orthogonal frame by a classical method and one finally obtains the vector 𝐴𝐴 ⃖⃖⃗𝐽𝐽  in the initial coordinate system.

We thus can obtain four possible values for the estimation of the rotational gradient. In practice, when the tetra-
hedron is not degenerated, these 4 values are extremely close, and we use as final result the average of these four 
estimations.

To compute div(B) we use the divergence law, or Green-Ostrogradski law, as:

∫∫∫
∇⃗ ⋅ �⃗ d� = ∮�

�⃗ ⋅ d�⃗�

In the same way we have shown that ∫ ���
0 �⃗��(�) ⋅ d�⃗ = (⃖⃖⃖⃗�� + �⃗�) ⋅ �⃗��∕2 we can show that on the face of 

the (i,j,k) triangle we have ∫ �⃗ ⋅ d�⃗ = �⃗��� ⋅ �⃗��� , where �⃗��� is the output normal to the (i,j,k) face and 
�⃗��� = (�⃗� + �⃗� + �⃗�)∕3 .

By dividing by the volume of the tetrahedron, we obtain the contribution of the divergence on each face;

���� = �⃗��� ⋅ �⃗���∕��

and finally the total divergence ���(�⃗) = �123 +�134 +�142 +�432

Figure 3.  Averaged direction of magnetic field over 20 years in X–Z GSM 
plane, for θ = 0. In red color: magnitude >50��  , in blue magnitude <50��  .

Figure 4.  Values of inter distances Dmin and Dmax with years.
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This method has been used extensively in all of the many curlometer studies applied to CLUSTER's FGM data. 
The analysis method to use multipoint magnetometer data appeared a long time before Cluster launch (Dunlop 
et al., 1988, 1990), as well as the influence of the shape of the tetrahedron on the accuracy of the measurement of 
currents (Khurana et al., 1996; Robert & Roux, 1990, 1993). Various geometric criteria have been suggested to 
define the shape of the tetrahedron in relation to the precision of the measurements (Dunlop & Eastwood, 2008; 
Dunlop et  al.,  2002; Robert, Roux, & Coeur-Joly,  1995; Robert, Roux, & Chanteur,  1995; Robert, Dunlop, 
et al., 1998; Robert, Roux, et al., 1998)

Another formulation to compute Curl and Div was developed by G. Chanteur (Chanteur & Mottez, 1993), based 
on barycentric coordinates. This elegant method estimate the matrix of gradients, the diagonal terms giving the 

Figure 5.  Top: current density from B grid with θ = 10. Bottom: same for θ = −10. Left: result without removing IGRF field before computation. Right: with 
removing. It can be seen that the anomalous currents are removed to a high degree and globally tend to follow expected large-scale behavior. Note that the distribution 
of the data changes with the value of θ, especially in the dawn and dusk regions.
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divergence, while the anti-diagonal terms are used to calculate the rotational gradients (Chanteur,  1998) and 
(Chanteur & Harvey, 1998). To linear order the calculation is identical, but the error handling is slightly different.

4.2.  Testing the Method

As we have to make a choice between the classical method based on Ampere's law, nicknamed the ’curlometer’, 
and the equivalent barycentric coordinates, we adopt the first method, based on a code developed by the author 
for over 30 years, and which was used and tested on numerous simulated data. We have to consider three condi-
tions before applying the calculation:

1.	 �Eliminate tetrahedra whose shapes are too flat or too long. We know that if the tetrahedron is degenerated, the 
estimate of div(B) and curl(B) may be false (Robert & Roux, 1990; Robert & Roux, 1993; Robert, Dunlop, 
et al., 1998; Robert, Roux, et al., 1998). So, we systematically reject all the estimates of curl and div where the 
elongation or planarity geometric factors of the tetrahedron (Robert, Roux, et al., 1998) are greater than 0.9.

2.	 �Limit the size of the tetrahedron: as it is difficult to know if the assumption of linearity is good or not, we can 
apply a condition based on the size of the tetrahedron, in particular taking the maximum inter-spacecraft dis-
tance Dmax. The choice of the limiting values of Dmax is the result of a compromise. If we choose a very small 
value, the result of the linear computation will be reliable, but the measurements errors can become large and 
we lose a large number of cases, so that the grids bins will be almost empty. Figure 4 shows this parameter 
during the 20 years of the data base. We can see that if we choose a small value, we lose a large part of data. 
So we choose Dmax = 10 ,000 km, as a compromise.

3.	 �Removal of the dipole field and possibly higher moments (e.g., as represented by the field given by the IGRF 
model (Thébault et al., 2015)) before applying the calculation allows to improve the quality of the result as we 
will see in the next section. See also discussion by Dunlop et al. (2018) and Dunlop et al. (2020).

4.3.  IGRF Field Subtraction

In Section 4.4 we can compute Curl(B) from individual tetrahedron data (𝐴𝐴 ⃖⃖⃗𝐵𝐵 and 𝐴𝐴 ⃖⃖⃗𝑃𝑃  values at each vertex), but it 
is also interesting to compute Curl(B) directly from the averaged B grid. For a resolution of 0.25 RE we define a 
virtual tetrahedron as follows:

𝑃𝑃1(𝑖𝑖𝑖 𝑖𝑖𝑖 𝑖𝑖), 𝑃𝑃2(𝑖𝑖 + 1,𝑗𝑗𝑗𝑗𝑗  ), 𝑃𝑃3(𝑖𝑖𝑖 𝑖𝑖 + 1,𝑘𝑘 ), 𝑃𝑃4(𝑖𝑖𝑖 𝑖𝑖𝑖 𝑖𝑖 + 1)�

Figure 6.  Averaged magnitude of residual magnetic field after IGRF subtraction for θ = −10 (left) and θ = +10 (right). To be compared with bottom part of Figure 2.
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The size of the tetrahedron is smaller than the actual tetrahedron, so �⃗  estimate is better. Furthermore we can 
use the FGM_POS_database rather than the FGM_POS_aligned_database which is slightly reduced by the time 
alignment processing. Figure 5 show the result before and after IGRF field subtraction. Removal of the IGRF 
field before applying the curlometer leads to a more convincing result: The ring current is clearly visible, around 
3–8 RE, with a current density of ∼5 − 20nA∕m2 corresponding to the previous studies (Zhang et al., 2011). This 
subtraction decreases the false values near the Earth and makes the ring current more visible. It clearly suppresses 
the spurious inner currents but leaves the outer signatures largely unaffected. Note that we obtain a closely similar 
result with the dipole magnetic field subtraction, but a little bit less efficient.

Since we subtracted the IGRF from the measured magnetic field before computation of the current density, it is 
interesting to see what is the �⃗ field values which contribute to the estimate of �⃗  . Figure 6 show this field for the 

Figure 7.  Top: current density magnitude in XY GSM plane, for dipole tilt angle θ = −10 (left) and +10 (right). Bottom: Div/Curl ratio.
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two previous values of θ. This figure can be compared with Figure 2 (bottom part) which shows the B field before 
subtraction of IGRF. All the strong field near the Earth is strongly reduced.

4.4.  Observation of Averaged Current Density

In a similar way to the previous 𝐴𝐴 ⃖⃖⃗𝐵𝐵 processing we now use the classical method to compute 𝐴𝐴 ⃖⃖⃗𝐽𝐽  from the ob-
served tetrahedron. So we use the Curl_Div_database and produce 3D grids containing the averaged values 
of 𝐴𝐴 ⃖⃖⃗𝐽𝐽  , |Div(B)|, |Div(B)/Curl(B)|, and the (𝐴𝐴 ⃖⃖⃗𝐵𝐵𝐵 ⃖⃖⃗𝐽𝐽  ) angle for various dipole tilt angles. Spatial resolution is 0.5 RE. 
Computation are done for each tetrahedron of the ‘Curl_Div_database’ database with IGRF subtraction. Figure 7 
(top) shows the magnitude of the current in the X-Y plane in the GSM system, for θ = −10 (left) and θ = +10 
(right). The ring current is clearly visible, around 3–8 RE, with a current density of ∼5 − 20nA∕m2 . As previ-
ously the position and magnitude correspond to expected values (Vallat et al., 2005; Yang et al., 2012; Zhang 

et al., 2011). The magnetopause current is also visible as red/yellow areas. 
|Div(B)/Curl(B)| ratio is given on bottom part.

On Figure 8 we can see the (𝐴𝐴 ⃖⃖⃗𝐵𝐵𝐵 ⃖⃖⃗𝐽𝐽  ) angle. In fact, 𝐴𝐴 ⃖⃖⃗𝐵𝐵 and 𝐴𝐴 ⃖⃖⃗𝐽𝐽  are perpendicular al-
most everywhere. The direction of the current density is shown on Figure 9. The 
direction is roughly clockwise around the Z axis, although for Y 𝐴𝐴 𝐴 0 the direc-
tion is not clear near the Earth. We can see on Figure 7, however, that the ratio 
div(B)/curl(B) is not very good in this region, while it is good everywhere else.

5.  Other Uses of the 3D Magnetic Field Grid
5.1.  Limit of the Closed Field Lines

The observation of the direction of 𝐴𝐴 ⃖⃖⃗𝐵𝐵 in the meridian and equatorial planes, 
for a fixed value of the dipole tilt angle, and for values averaged over 20 years, 
shows a very good organization of the field inside the magnetosphere. Af-
ter the bow shock, the direction of the field becomes more disorganized, as 
expected. Hence, we propose to use these field maps to define the limit of 
closed field lines, essentially on the day side, where we have enough data. We 
are not using this limit to define the magnetopause, nevertheless, it closely 

Figure 8. 𝐴𝐴 (⃖⃖⃗𝐵𝐵𝐵 ⃖⃖⃗𝐽𝐽 ) angle in XY GSM plane, for dipole tilt angle θ = −10 (left) and +10 (right).

Figure 9.  Direction of the current density in XY GSM plane for θ = 10. Blue 
color correspond to intensity 𝐴𝐴 𝐴 1nA∕m2 , red for intensity 𝐴𝐴 𝐴 1nA∕m2 .
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corresponds to other determination of the magnetopause and therefore inter-
esting to plot.

For the meridian plane, this limit is approximately fitted by half an ellipse, 
with major axis along X and minor axis along Z, the right focus being cen-
tered on the Earth. The elliptical equation in the XZ plane of GSM system is:

𝑟𝑟(𝛼𝛼) = 𝑝𝑝∕(1 + 𝑒𝑒 cos 𝛼𝛼)�

To compute p and e parameters we assume that the two points (X,Z) = (12,0) 
and (0,18) are part of the ellipse, which allows us to determine p = 18 and 
e = 0.5.

This very simple shape and applies quite well to the average experimental 
data. We have verified that it also provides good results when the dipole tilt 
angle changes, up to plus or minus 30°. This limit therefore can simply show 
the boundary between field lines having a defined geometry (closed field 
lines) and the part of space where they appear to be disorganized.A similar 
graph was made in the equatorial plane, with same parameters.

5.2.  Spatial Interpolation in the 3D Grid

We therefore have the average values of the magnetic field in a 3-D grid of 
about 40 RE with a resolution of 0.25 to 1RE (∼1,000–6,000 km). Of course, 
the higher the resolution is, the more empty the cells will be. However, from 
the files defined in Section 2, we can create a grid of arbitrary resolution, 

depending on what we want to do. The figures presented here were made with a resolution of 0.25 RE, which is a 
good compromise between the size of the cells and the number of points inside each one. With this data grid, we 
can perform a 3-D interpolation inside each cell in order to obtain a field value at any point in space. To proceed 
with this interpolation, we collect all the points in the grid inside a sphere of radius Rmax, centered on the given 
point, and we carry out a weighted average of all the points with a Franke-Little weighting (Franke, 1982). Each 
point on the grid is at a distance:di from the requested point, where its corresponding weight is Wi = max(1. − di/
Rmax, 0.). This means that any point beyond Rmax will have zero weight.We have chosen this interpolation meth-
od for its simplicity and efficiency, with regard to the four million points to be processed for each grid. Thus, 
we can calculate the field at any point in space, and therefore apply the TRACE field line tracing subroutine of 

Figure 10.  Field line tracing from spatial interpolation of B data grid, for 
θ = 0.

Figure 11.  Same as Figure 10 but for θ = −20 (left) and θ = +20 (right).
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GEOPACK software (Tsyganenko, 2008), slightly modified to introduce the data produced from the 3D grid. 
Starting from a point in the space of the grid, we thus can calculate all the points of a magnetic field line.

5.2.1.  Field Line in Meridian Plane

Figure 10 shows an example of ray tracing in the meridian plane (Y = 0). The starting point of the field lines is always 
at Y = 0, for various values of X and Z allowing to have lines spaced correctly. Apart from the starting point, nothing 
guarantees of course that these lines are confined in the XZ plane. The lines are not complete, because the grid has a lot 
of empty cells, but we still get an overview of the mean field lines inside the magnetosphere. It should be noted that the 
greater the resolution of the grid, the more precise the interpolation will be, but also the longer will be the calculation 
time to obtain a field line. It would of course be preferable to interpolate directly from the initial point cloud instead 
of using the averaged point grid, but this creates too large a number (more than 600 million points) and makes this 
operation impossible on a small computer. A simple grid of 0.25 RE resolution already contains four million points.

Figure 12.  Field Line Tracing near the northern cusp for θ = 0 and two values of the distance. Left: 7 RE. Right: 10 RE.

Figure 13.  Field Line Tracing near the south cusp for θ = 0 and two values of the distance. Left: 7 RE. Right: 10 RE.
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It is unfortunate that the zones of the northern cusp are not better defined, because of the empty cells, but never-
theless the general appearance of the field lines obtained is quite plausible. Figure 11 shows two other examples 
of field line tracing in the meridian plane, for dipole tilt angle = −20 (left) and +20 (right). For θ = −20, the data 
grid does not contains many points, but enough to show the limit of the closed field lines, and the south cusp. For 
θ = +20, the two cusps are visible.

5.2.2.  Field Line Near the Cusps

To visualize the field lines near the cusps, we place ourselves in a plane perpendicular to the mean cusp direction 
(𝐴𝐴 ⃖⃖⃗𝑉𝑉  ) determined from Figure 10, and at a distance of 4 and 10.5 RE for the northern cusp, and at 5 and 11 RE for 
the south cusp. The center of this Y-M system is assumed to be the center of the cusp. In this system, Y = YGSM 
and �⃗ is perpendicular to 𝐴𝐴 ⃖⃖⃗𝑉𝑉  , included in the (X-Z) plane, in northern direction, roughly tangent to a pseudo 
magnetopause. The (V,Y,M) system is also known as (V,D,H) system (Robert, 2019). In this plane, we start the 
field lines computation from a series of points following a circle of radius of 2.5 RE. The field lines are calculated 
in both directions, parallel and anti-parallel to 𝐴𝐴 ⃖⃖⃗𝐵𝐵 .

The results are shown in Figures 12 and 13 for Northern and South cusps, with θ = 0. The cone shape of the cusps 
is easily recognizable.

6.  Conclusions
The use of 20 years of data of the FGM magnetometer made it possible to observe the average behavior of the 
magnetic field, according to the values of the dipole tilt angle. The creation of a magnetic field database where 
all 𝐴𝐴 ⃖⃖⃗𝐵𝐵 and 𝐴𝐴 ⃖⃖⃗𝑃𝑃  vectors of the four spacecraft are time aligned made it possible to calculate curl and div of 𝐴𝐴 ⃖⃖⃗𝐵𝐵 over 
the entire duration of the mission, and made it possible to produce current density maps, in addition to those of 
the magnetic field. The validity of the estimate of this current density has been discussed. Note that the small-
scale MMS configurations access a different plasma scales and allow comparison to plasma currents(Dunlop 
et al., 2018) which may be improve the validity of the estimate of 𝐴𝐴 ⃖⃖⃗𝐽𝐽  .

A field average 3-D data grid was calculated for 𝐴𝐴 ⃖⃖⃗𝐵𝐵 and 𝐴𝐴 ⃖⃖⃗𝐽𝐽  and can be used for other studies. The possibility of 
adding data from other missions (THEMIS, MMS) to this grid would make it possible to obtain better spatial 
coverage, and therefore maps of direction and intensity more extensive in space, notably on the night side. This 
addition would also make it possible to fill a lot of empty cells in the grid, and to obtain more precise field line 
maps. Other indicators in addition to the dipole tilt angle could and should be added (magnetic indices, solar wind 
parameters). In future work it would be interesting to compare the B field maps with the Magnetic field Rotation 
Analysis method developed by Shen et al. (2007), and comparisons to MHD models.

All the databases set up to carry out this work, as well as the reading and calculation codes (f90), can be made 
available to any interested person.
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