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ABSTRACT

 The determination of the current density from the magnetic field measurements on board the 4 Cluster 
spacecraft is a key issue to the success of the mission. Earlier studies have been concentrated on the 
identification of  a  single geometric parameter  characterizing the shape of  the tetrahedron and its 
influence upon the accuracy  of  the  determination of  the current  density. We suggest  to  use  two 
parameters F (for flattening) and L (for lengthening). The accuracy of the estimate of J as a function of 
these two parameters is studied via numerical simulation based on a  large number of geometrical 
configurations for the tetrahedron. The possible relationship between div(B) and the uncertainty in the 
determination of the current density is studied, as well as the possible influence of the direction of the 
current with respect to the largest of the faces of the tetrahedron.

1. INTRODUCTION

The Cluster  mission will enable simultaneous measurements of the vector magnetic field at  the 4 
vertices of a tetrahedron [1]. The shape of this tetrahedron evolves along the mean trajectory of the 4  
spacecraft. Thanks to a contour integral method (CI) or to a barycentrique coordinate method (BC), it 
is possible to estimate the current density J and the divergence of B inside the tetrahedron [2, 3]. These 
estimates are subject to various sources of errors [4, 5, 6]. There are basically two types of errors. The 
first  one is  related to  the uncertainties in the measurement of  B,  and  to  the uncertainties in the 
localization and the attitude of the 4 spacecraft. The second one is related to the linear interpolation 
which is made between the various measurement points. The influence of these errors on the accuracy 
of the estimate of J or div(B) are also related to the shape of the tetrahedron [4, 5, 6]. We discuss here 
the following questions: (i) how to characterize easily the shape of a given tetrahedron, (ii) what is the 
relation between the geometrical shape of the tetrahedron and the accuracy of the determination of J via 
the estimate of curl(B) ,  (iii) can div(B) be used as an estimate of the error  J, and (iv) when the 
tetrahedron is relatively flat, is there a relation between the accuracy of the determination of J and the 
orientation of the current with respect to the orientation of the tetrahedron? These questions are studied, 
with the help of a numerical simulation based on a large number of possible tetrahedron and a model 
for the current structure.
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2. THE  SHAPE OF THE TETRAHEDRON

2.1. The 1D geometric criterion

Several geometric parameters were proposed [4,6,7,8] to characterize the shape of a tetrahedron, with 
only one parameter. The concept of  "fractional dimension" [7] has been introduced to characterize the 
transition on a linear, a flat, and a regular tetrahedron. Several other 1-D parameters have been studied 
[4] to characterize the shape of the tetrahedron and to try to relate this shape to the accuracy of the  
measurement of the current density computed from the magnetic field measurements. Nevertheless, it 
seems that even the "best" 1-D parameter is not sufficient to characterize the shape of the tetrahedron 
and therefore do not provide an accurate index for the a  priori assessment of the accuracy of the 
determination of J [4]. In the present work we suggest to use a set of two parameters to characterize 
the shape and we test the efficiency of the relation between these parameters and the accuracy of the 
determination of J.

2.2. The Cluster inertial ellipsoid

To describe the shape of a given irregular tetrahedron we use the concept of an inertial ellipsoid [8],  
which is that which fits best the tetrahedron. This ellipsoid is derived from the inertial tensor defined as:
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The eigen vectors determine the directions and the lengths of the semi-major, the semi-middle and the 
semi-minor axis of the ellipsoid. This is a very simple way to approach the shape of a tetrahedron, 
since we can have directly a quick look at the global shape: for instance an ellipsoid reduced to a sphere 
corresponds to a regular tetrahedron, with an inter-spacecraft distance equal to the radius, an ellipsoid 
reduced to a plane corresponds to a flat tetrahedron, and an ellipsoid reduced to a line corresponds, of 
course, to the alignment of the 4 spacecraft.
 

2.3. The Flattening and Lengthening parameters

The inertial ellipsoid gives directly an information about the shape of a tetrahedron with 3 parameters 
a,  b,  c corresponding to  the length of  the 3  axes.  We can  easily reduce this  number  to  only 2 
parameters, by defining a "Lengthening parameter " and a "Flattening parameter " derived from  the 3 
axes as:

L  1
b

a
F  1

c

b
Of course a regular tetrahedron has a Lengthening (L) and a Flattening (F) equal to zero (a=b=c), a 
long tetrahedron has a Lengthening close to 1 (a>>b), a plane tetrahedron has a Flattening close to 1 
(b>>c),  and  a  both  long and plane tetrahedron has  Lengthening and  Flattening both  close to  1 
(a>>b>>c). Thus, only 2 parameters contains all the necessary information characterizing the shape 
of the ellipsoid, since of course b and c axis can be rebuild from a (giving the absolute size) and from L 
and F via b=a(1-L) and c=a(1-L)(1-F).

2.4. Types of tetrahedra

The L and F parameters allows us to define 5 types of tetrahedra. Figure 1 shows where, in the L-F 
plane,  are  each type of  tetrahedron.  For  low values  of  L and F  we can  define a  "Balls  shaped 
tetrahedra" (bottom left corner of the L-F diagram) corresponding to the pseudo-regular tetrahedra. For 
a high value of F and a low value of L (top left corner of the L-F diagram) the ellipsoid is nearly a flat  
circle and we can define it as "Dishes shaped". At the opposite side (bottom right corner) we can find a 
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long ellipsoid with a pseudo circular section, that we can define as a "Cigars shaped". At least, at the 
top right corner, we can find tetrahedra which are both flat and elongated, and we can call this type the 
"Knife Blade shaped". Tetrahedra that do not belong to one of these categories or types, because they 
do not have a specific shape, will be referred to "Potatoes type" and are located at the center of the L-F 
diagram.

Figure 1: The five types of tetrahedra: Balls, Dishes, Cigares, Knife Blade, and Potatoes.

2.5. The characteristic of the Cluster tetrahedron along the orbit

The configuration of the Cluster  tetrahedron is  not  frozen along the orbit,  it  varies with time. In 
particular, it is possible to have a regular tetrahedron in two points of an given orbit [5,8], but in the 
between the shape of the tetrahedron can take any other configuration. On figure 2, the shape of the 
Cluster tetrahedron is computed and plotted in a L-F diagram along a whole orbit. The orbit has been 
given by ESA [9], and established on the basis of a launch in November 1995. Although the launch is 
delayed, the arguments remain the same. The time step is  6  minutes,  and the arrow indicates the 
direction of the motion. The apogee corresponds to the portion of the figure where the different points 
are very close together, the velocity being low and the shape slowly varying. The perigee corresponds to 
the portion of the figure where the points are widely spaced, because the spacecraft velocity along the 
average trajectory is large. 
On figure 2-a (1995,  December 24), in accordance with the request that the tetrahedron should be 
regular  at  2 points along the orbit,  the first  point is located near (L,F) =  (0.28,   0.01)  ,  and the 
tetrahedron is  regular  only during a  very short  period.  The second point where the tetrahedron is 
regular corresponds to a longer period, from (L,F) =  (0.21, 0.01) to (L,F) = (0.01,  0.16). These two 
periods where the tetrahedron is regular are of course located in the region of the "Balls type". During 
the rest of the time, the L-F parameters take any value, in particular the tetrahedron is absolutely flat  
(F=0.99) for 2 points along the orbit, but never completely linear (the maximum value of L is 0.8 near 
the perigee). For another example shown on figure 2-b (1996, June 24) the conclusions remain the 
same. During the course of the Cluster mission, all possible shape of tetrahedra are expected, and thus, 
simulations must take into account any possible value in the L-F plane.
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Figure 2: Evolution of the shape of the Cluster tetrahedron along its trajectory in a L-F diagram  
(data provided by ESA). a: December 24, 1995 (top); b: June 24, 1996 (bottom)

3. THE  SIMULATION METHOD

3.1. The tetrahedra reservoir

The shape of the tetrahedron being characterized by the L-F  parameter, we will try  to identify a  
relationship between the value of these parameters and the accuracy of the measurement of the estimate 
of  curl(B)  and div(B).  First,  to  be sure  that  any  shape are  taken into account,  we have built  a 
"tetrahedra  reservoir" of about  1000 tetrahedra.  This  reservoir  should represent a  wide variety of 
configurations and therefore be homogeneous in the L-F plane. Figure 3 shows that there is indeed an 
homogeneous distribution of representative points. To avoid a bias, all the tetrahedra have the same 
mean inter-spacecraft distance <D> =  (d1+d2+...+d6)/6, arbitrary fixed at 1000 km.
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Figure 3:  The tetrahedra reservoir used in the paper. Notice the homogeneous coverage of the L-F plane

3.2. The current structure models

The goal is  to simulate the crossing of a  current  structure  by the Cluster  constellation. We have 
therefore to define a current structure model. The chosen model is described in figure 4: it consists of a 
cylindrical  current  tube,  with an  homogeneous current  density (figure 4-a),  or  a  gaussian current 
density profile (figure 4-b). In all cases, we assume that the size of the Cluster tetrahedron is smaller 
than the size of the current density structure, so all the spacecraft are simultaneously located inside the 

current density structure. Typical values are <D>=1000 km, R or =5000 km, Jo=10-8 A.m-2. 

Jo=10-8 A.m-2

R=5000 km

r

<D>=1000 km

Jo

Jo=10-8 A.m-2

=5000 km

r

<D>=1000 km

Jo

Figure 4: Current structure models (a) current tube with homogeneous current density profile (left);  
(b) same with gaussian current density profile (right).
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3.3. The computation of J and div(  B  )

When the Cluster tetrahedron is inside the current density structure, we compute curl(B) and div(B) 
from the barycentric coordinate method. The uncertainty on the measurements is simulated by adding 
of a random noise on the 3 components of the 4 Bi vectors. Similarly a random noise is added to the 4 

Si vectors describing the positions of the 4 spacecraft. The amplitude B of the noise added on the 3 
magnetic field vectors is independent of the components, and proportional to the modulus of B. The 
uncertainty  S in the knowledge of the spacecraft position is taken to be proportional to <D>, the 
average interspacecraft distance. B/B or S/S represent the relative accuracy in the determination of 
Bi and Si. Typical values for S/S is 1%, which corresponds to the nominal value given by the Cluster 

project. By computing J=curl(B)/o from the perturbed simulated data, we obtain an estimate of the J 
vector which is compared to the real value given by the model. Thus the accuracy of the estimate of J, 
J/J, can be estimated. Previous works [2,4] have shown that the errors B/B or S/S have the same 
effect on the accuracyJ/J. Therefore we will, for the sake of simplicity, only consider the perturbation 
S/S. This computation is made for all the tetrahedra taken from the previously defined reservoir, thus 
all the L-F plane is covered.

4. RESULTS

4.1. Influence of the shape of the tetrahedron on the error   J/J

First we consider an homogeneous current density profile, and therefore there is no error associated 
with  the  linear  interpolation  between  the  measurement  made  at  the  4  s/c  locations;  only  the 
uncertainties on the positions measurement are taken into account (<S/S>=1%, B/B=0). The main 
results are shown in figure 5, where we have plotted the relative accuracy J/J in a L-F diagram. The 
size and the colors of the circles indicate the values ofJ/J: for J/J=0, the radius of the circle is null, 
the largest circles correspond to J/J ³100%. 

Figure 5: Influence of the shape of the tetrahedron on the estimate of J.
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The main conclusion is that for a large fraction of the diagram, corresponding to the "Balls type" and to 
a large part of the "Potatoes type",  the accuracy  J/J remains below a reasonable value (less than 
20%). But for values of the Lengthening or Flattening parameter larger than about 0.6, the errors reach 
30% or more. 
For L or F > 0.9, which corresponds to a very long or a very flat tetrahedron, the error can reach 100% 
and more, especially of course when both F and L gets of the order of unity. As a matter of fact, the 

error increase roughly with the radius r=(L2+F2)1/2, but this variation is not linear.

4.2. Influence of the shape of the tetrahedron on the estimate of div(  B  )/curl(  B  )

The results are shown in the figure 6.  The values of div(B) and curl(B) are the estimated values, 
simulating the measurement values.  Notice that  the tetrahedron reservoir  being homogeneous,  the 
theoretical value of curl(B) is the same for all the points, and the curl(B) estimated values differs from 
the theoretical ones according the results of figure 5. The theoretical value of div(B) is obviously equal 
to zero. Since div(B) is not a normalized quantity, we have choose to display the estimate of the ratio 
div(B)/curl(B) ratio rather than the absolute value of div(B). The color code is the same as for J/J. 
Roughly speaking, the diagram looks the same, the "Balls" and "Potatoes" types gives the lower values 
of the divergence, and a large value of  L or F leads to a large value of  the estimated divergence.

4.3. Relationship between the error    J/J and div(  B  )/curl(  B  )

Since the div(B)/curl(B) diagram looks the same as the J/J diagram, one could consider the estimate 
ratio div(B)/curl(B) as an estimate of the error J/J. This is statistically true (see previous subsection), 
but a more careful investigation shows that there is no one to one correspondence between the two 
diagrams; a large value of J/J can correspond to a small value of div(B)/curl(B) ratio, and vice-versa, 
good estimates of J can correspond to large value of the divergence (large div(B)/curl(B) ). This is 
particularly true for large values of L or F. 

Figure 6: Influence of the shape of the tetrahedron on the estimate of div(B)/curl(B).
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In order to characterize the possible relationship between J/J and div(B)/curl(B), we have plotted it in 
the same figure (figure 7). The color code and the symbols corresponds to the family of the tetrahedra.  
A  possible  relationship  between  theses  two  parameter  would  result  in  the  alignment  of  the 
representative points. This is not observed; the distribution of the points has no preferred direction. Of 
course the area of the "Balls" (round symbols) is restricted to the central part of the diagram, close to 
zero, while the other types cover all the diagram. The non-existence of a correlation between div(B) and 
J can be explained by the fact that their computation does not use the same components in the tensor 
B: the divergence is obtained from the diagonal terms, while the curl is built from the non-diagonal 
terms.  Theses  terms  being perturbed  by  the  addition  of  a  independent  random noise  on  the  12 
components defining the 4 spacecraft positions to simulate the uncertainties on the measurement of 
theses position, the corresponding errors on the gradient tensor are not dependant. Practically, if the 
errors on the various components are effectively independent, this means that we cannot use the value 
of the divergence to estimate the errorJ. 

Figure 7: Relationship between the error J/J and the ratio div(B)/curl(B).

4.4. Influence of the direction of the current on the error   J/J

In the present subsection we investigate the potential influence of the direction of the current with 
respect to the largest face of the tetrahedron. Figure 8 show the result: the relative error J/J is plotted 
versus the angle  which is the angle between the direction of the current and the normal to the main 
plane of the tetrahedron. The main plane of the tetrahedron is defined as the plane containing the semi-
major and semi-meddle axis of the inertial ellipsoid, thus the normal to this plane is the semi-minor 
axis. 
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Figure 8:  Influence of the current density direction on the errorJ/J.

A color code and a symbol are used to separate the different families of tetrahedra. The "Balls" are 
useless because the main plane has no meaning for a sphere. On could expect to find in this diagram a 
relationship between J/J and , showing for instance that the quality of the estimate would be better 
when the current is orthogonal to the main plane. In fact the (expected) minimum of J/J for =0 or 
=180° is not clear. One can observe a slight tendency for the "Dishes", for which the main plane has 
of course the clearest meaning, but this relationship is not very obvious. Practically, except for values 
of  very close to 0 ° or 180° , it seems that the angle  does not organize the diagram and therefore 
errorJ/J is not related to this angle.

14.5   Heterogeneous current profile

The  estimate  of  the  current  density  inside  the  volume defined by  the  tetrahedron  relies  on  the 
assumption that the magnetic field varies linearly between two spacecraft. If the current density profile 
is  not  homogeneous  in  space  (as  it  will  be  the  case),  the  higher  orders  derivatives  introduce  a  
supplementary source of errors. To study this effect, we use a gaussian shape for the current density 
profile, such as the one shown in figure 4-b, and define a heterogeneity factor h=<D>/ where <D> is 
the mean inter-spacecraft distance and  is the root mean square deviation of the Gaussian. In order to 
better illustrate the effect of heterogeneity of the profile, we neglect, hereafter, the uncertainties B/B 
and S/S which are set to zero. 

Figure 9 shows the relationship between the shape of the tetrahedron, again defined by the L and F 
parameters, and the accuracy  J/J of the estimate, for a low value of the heterogeneity factor. The 
chosen value h=0.1 being low, the profile of the current structure is not very heterogeneous at the scale 
of the Cluster tetrahedron, so the relative error J/J is very low, except for large values of L or F. For 
large values of L and F we find a result similar to the homogeneous case with a relative error S/S of 
1% (see figure 5). As before, the errors grows up rapidly as soon as the tetrahedron degenerates to a  
very flat or a very elongated configuration. If now we increase the heterogeneity factor, for instance 
h=0.2 (figure 10), the error J/J grows rapidly, but the conclusion about the shape remains the same. 
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Figure  9:  Influence  of  the  shape  of  the  
tetrahedron on the  estimate  of  J  for  a  low 
degree of heterogeneity (h=0.1).

Figure 10: Same as 9,  but for a higher  
degree of heterogeneity (h=0.2).

Nevertheless, it seems that the heterogeneous case is more sensitive to a flat or a linear tetrahedron than 
the homogeneous case; in other words it seems that the errors due to the linear interpolation are more 
sensitive for a non regular tetrahedron that the errors associated with uncertainty on S/S or  B/B. 
This is particularly true for the div(B)/curl(B) ratio: figures 11 and 12 show this ration for h=0.1 and 
h=0.2, and we can see that the influence of the shape is stronger on this ration than on the accuracy 
J/J. Since the errors on div(B) and curl(B) are unrelated, the total error on the div(B)/curl(B) ratio is 
larger. 

We have checked that  the other  conclusions,  obtained in homogeneous case,  remain the same in 
heterogeneous case, in particular figure 7 and 8 looks the same with finite value of h. Thus, even in 
heterogeneous case,  there is  no correlation between  J/J  and  div(B)/curl(B),  and  the relationship 
between J/J and the  is not obvious, except, maybe, near the limiting values =0 or =180°.
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Figure  11:  Influence  of  the  shape  of  the  
tetrahedron on the estimated div(B)/curl(B), for  
a low degree of heterogeneity  (h=0.1).

 Figure 12: Same as 11,  but  for a higher  
degree of heterogeneity (h=0.2). 

5. CONCLUSIONS

Characteristic of the shape of the tetrahedron

The inertial ellipsoid is a good approach to characterize the shape of a tetrahedron, and its orientation 
in space.  The L and F  parameters  allows an appropriate description of this  shape with only two 
quantities, and can be used to defined 5 main types of tetrahedra: "Balls", "Dishes", "Cigars", "Knife 
Blade" and "Potatoes".  
The evolution of the shape of the tetrahedron along Cluster orbit can easily be visualized by displaying 
it in the L-F diagram, where the shape of the tetrahedron and the accuracy of the determination of the 
current density can be easily guessed. 

Relationship between the shape of the tetrahedron and    J/J

Simulations of the crossing, by 4 S/C, of a current density structure allow an independent estimate of 
the effects of the various sources of errors, such as the uncertainty on the localisation of the spacecraft, 
the noise in the magnetometer measurements, and the errors dues to the linear interpolation used for the 
computation of the various vectorial quantities. These simulations give therelative accuracy J/J of the 
measurement versus any significant parameter. In particular the accuracy  J/J has been plotted in a 
(L,F)  diagram,  which is  very useful  to  organise the results  and to  relate easily the shape of  the 
tetrahedron to the accuracy of the estimate of J or div(B). In particular, the L-F diagram is useful to 
get a quantitative estimate of this influence, and if, as expected, the regular tetrahedra lead to the most 
accurate estimates of J or div(B), the L-F diagram identify a step beyond which the estimate of J or 
div(B) is no more valuable. The conclusions are roughly the same for homogeneous case and for 
heterogeneous case, but it seems that the error due to the linear interpolation in the heterogeneous case 
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is more sensitive to a non regular tetrahedron that the errors due to a relative uncertainty S/S on the 
positions. This is particularly true for the div(B)/curl(B) ratio. In a future work, it would be interesting 
to try to quantify more precisely the amplitude of the linearization errors versus the heterogeneity 
parameter.

Relationship between div(  B  )/curl(  B  ) and    J/J

A potential  relationship between div(B)  and  J  has  been studied in detail.  Statistically, the ratio 
div(B)/curl(B) has the same behaviour as J/J. But there is no one to one correspondence. The reason 
is obvious: since div(B) and curl(B) are computed from different terms from B, unless the errors are 
independent, there is no correlation between div(B)/curl(B) and J/J. So, during the Cluster mission, if 
the sources of errors are independent, div(B) should not be used as an estimate of the accuracy of the 
measurement of J.

Influence of the direction of the current with respect to the tetrahedron

For a nearly flat tetrahedron, one would expect a strong relationship between the angle  between the 
direction of the current and the normal to the main plane of the tetrahedron. This relationship does 
exist,  but  only for  values of   very close to  0°  or  to  180°.  Thus,  the orientation of the Cluster 
tetrahedron is not a strong constraint for the estimate of the current density.
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