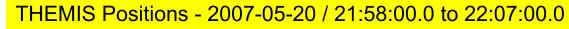
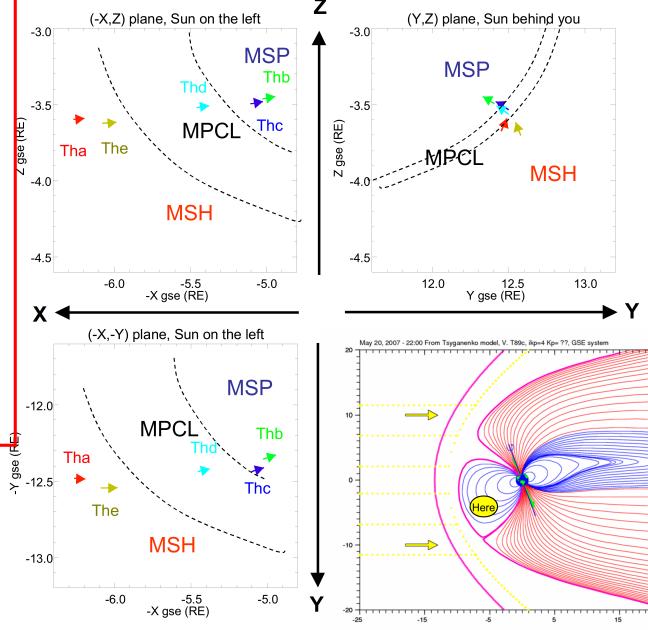
Short (transverse) scale Drift Alfven Waves (SDAW's) at the magnetopause.


A.Roux, P.Robert, O.Le Contel, V. Angelopoulos, J. Bonnell, R. E. Ergun, J.P. McFadden, K.H.Glassmeier.


- Large amplitude ULF waves are often observed at, or near, the magnetopause (Anderson et al.,1982, Rezeau et al.,1986). These waves have been interpreted as KAW's (Rezeau et al.,1993, Stasiewicz et al., 2001, Chaston et al, 2008, 2010...).
- Heated electrons have also been frequently observed near the magnetopause, with sometimes counterstreaming FA features (Hall et al., 1991...).
- 1- Are electrons heated by the observed waves?
- 2- How can we explain that electrons interact with waves having A PRIORI a slow phase velocity (~Va<<Ve)?
- 3- What is the generation mechanism of the waves?

On May 20th, 2007 THEMIS spacecraft bracketed the magnetopause:

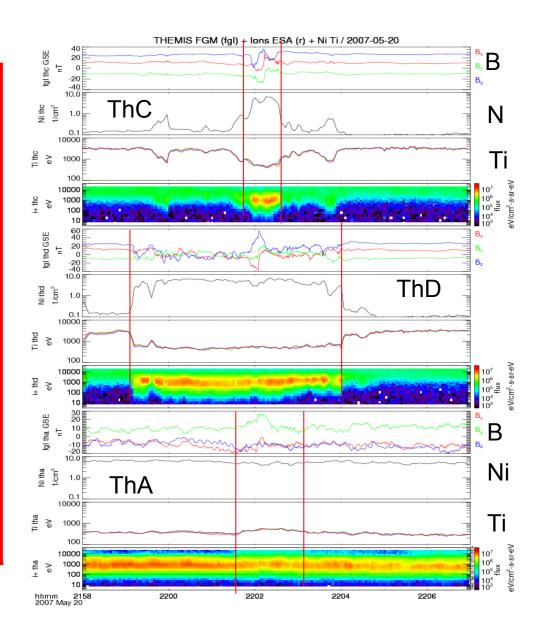
- Thb&Thc were on the magnetospheric side.
- Thd was in the magnetopause current layer (CL), while
- Tha&The were on the *magnetosheath* side.

In the following, we only show Thc, Thd, & Tha.

THEMIS FGM (fgl) + electron ESA (r) +SCM (scf) / 2007-05-20 On ThA we see that the fgl the GSE differential fluxes extend to higher energies, as the s/c sof the GSE approaches the MPCL. **MSp MSp** While the density is the same as in the free luxe tho 1000 Msheath, Te is larger by a factor 2, @ThA, but also @thD, &ThC MP.CL MSp Magnetosheath electrons are D heated in the MPCL, FTE and the adjacent M.Sheath 10000 1000 e heating coincides with enhanced magnetic components of ULF waves. Do waves heat electrons? 1000 CLUSTER-THEMIS workshop, Corfou

2200

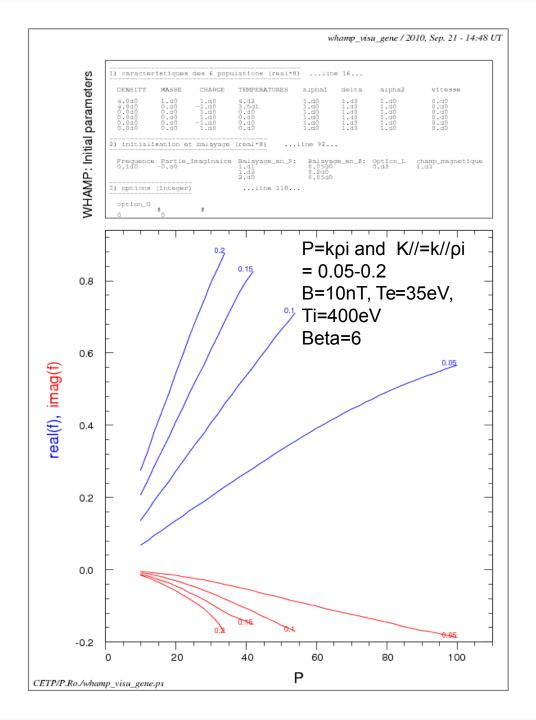
2202


2204

2206

- Magnetosheath ions also penetrate in the MPCL, but their temperature remains about the same. Unlike electrons, ions are not heated.
- Classical Alfven wave/KAW's Va~100km/sec << Ve cannot heat magnetosheath electrons!
- However Short transverse scales (kpi>>1) Alfven Waves can interact with electrons since:

$$(\omega / k/Va)^2 = [k\rho i]^2 (1+Te/Ti)/(\beta+2)$$


Howes et al.(2008), Sahraoui et al.(2009)

Dispersion relation 1-Homogeneous medium

$$(\omega / k/Va)^2 = [k\rho i]^2 (1+Te/Ti)/(\beta+2)$$

- From WHAMP (Ronnmark)
 We can confirm the dispersion
 relation above, and estimate the
 damping rate.
- Blue curves are for normalized frequency, red for damping rate.
- Short transverse scale Alfven waves have large parallel phase velocities and a finite E//
 ⇒heat Magnetosheath electrons
 For instance with K//=0.05,
 ω/ k//~2400km/s⇔35eV

Characterization of the waves

MVA calculations
GSF to MVA matrix:

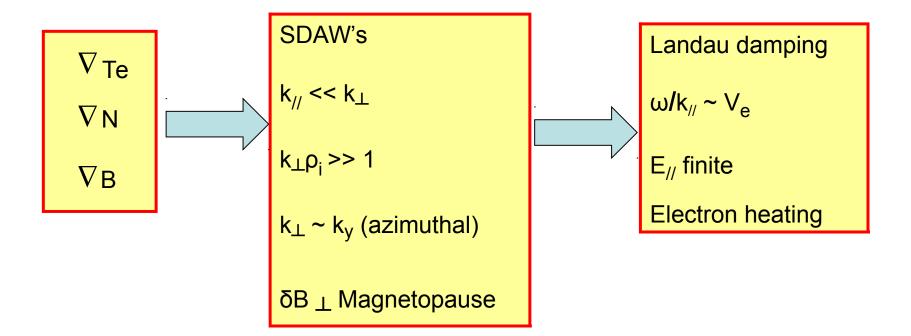
0.379862 -0.184205 -0.906517

Eigen values:

253.837311 13.383863 8.928047

 $k_{\perp} \sim ky (azimuthal)$

 δB_{\perp} Magnetopause


Generation of the waves:

-No thermal anisotropy

-Sharp gradients ⇔drift waves?

Mikhailovskii (1992) has obtained a dispersion relation for short transverse scale AW's valid for a high beta plasma and $k_{\perp}\rho_{i}>>1$. It includes gradB, gradN & gradT. Hence we call it Short scale Drift Alfven Waves (SDAW's). Mikhailovskii shows that SDAW's are unstable for gradTe/gradN<-1.

Sharp antiparallel gradients in Te and N are consistent with the data.

Questions:

- What is the NL evolution of SDAW's?
- SDAW's have finite E// and δB_{\perp} Magnetopause; do they produce small scale turbulent reconnection?