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1) Introduction

THEMIS data are used for this study.
Choosed event : 20 Mai 2007 ~ 22:00
because :

e 5S/C are aligned

e |t covers simultaneously
-the magnetosheath (MSh),
-the magnetopause current layer(MPCL),
-magnetosphere (MSp)

* For convenience, we will choose hereafter
to plot only Tha, Thd & Thb data
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2) Relationship between THEMIS - 2807-03-20 GSE
electron heating and waves ZEN— —{ 3
observed simultaneously o eTE El

@ =S, MSp MSp -
v a _g; : ‘ WWM :%

a) EIECtI'OnS Low Flux < 10000
highE:MSp v % 1000

« Thbis located into MSphere and
crosses rapidly the CL (FTE on B)

* Thd stays 4mn into MpCL. @

« Tha is located into MSheath and
crosses briefly MpCL

o 3 S/C see into MpCL heated
electrons from MSheath :
Te~35eV =>70eV (see Tha)

m=) Question 1: @
do the waves heat the electrons ?
High Flux
LowE : MSh ,

L] I L] L] l 1 I
F ,ﬁgﬁrf/ COSPAR 2012, July 14-22, Mysore, India 21:58  22:00  22:02  22:.04  22:06

eV/cm?-s-sr-eV

eV/cm?-s-sr-eV

eV/cm?®-s-sr-eV



a) lons

 No heating during MpCL crossing
(see Tha)

 Temperature in MpCL (All S/C) is the
same as temperature in MSh (Tha).

« Same density :
Ni(MPCL) ~ Ni(MSh)

ms) Msheath plasma enters into MpCL
=) Question 2: How Alfven waves

(V~ VA) could heat fast e
rather than slow ions (Vi~ VA)?

=) Question 3: How to characterize @

theses waves?
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3) Definition of a new coordinate system to organize the data

a) One performs an MVA on FGM (Thb) during the Mp crossing

TPN system:
Al A2 A3
0.985 0.163 0.037 + (T89 model) Earth
L M N GsE * 5 O
0.434 -0.424 0.795 G (to the Sun)
-0.566 0.558 0.606 S
-0.701 -0.713 0.002 E
T P
T P N
0.538  0.829 0153 L S/C location / \
-0.843  0.534 0070 M
-0.024 -0.167  /0.986 N N Vg ®

* The N LMN output normal is the same as the N TPN output normal
=9 This means that Bo field rotates into the local tangent plane to the paraboloide ~ Mp.

m=) \\e defined a simple coordinate system which is the same for the 5 S/C, and independent
of the time duration of the selected period, which is useful. We will see on next section
that such a system is particularly convenient to organize magnetopause data.
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3-b) Data organization in TPN system THEMIS 2007-05-20 TPN
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* By = 0 on both sides of the Mp i N
(35/C) | *gm}‘ e
Bl &L

=) The DC field is tangent to the 10— MSp ﬂ MSp
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OE 0 MR P e L : E
L m 40 -
* V. = 0 into the MSp (Thb), @ B e
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=
5 : MS
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4) Wave polarization on both FGM and SCM

* MVA on filtered FGM data between 0.8 and 2Hz (max. available frequency)
* |dem for SCM between 0.8 and 4 Hz.
* Results in TPN

FGM SCM
Al A2 A3 AL A2 A3
1.000 0.694 0.523 1.000 0.826 0.457

T P N T P N

6 -0.079 0.620 0.780 Lw
-0.301 0.731 -0.612 Mw
—-0.950 -0.283 0.129 Nw

» The FGM wave fluctuation matrix is diagonal in TPN (a little bit less for SCM)
* In two cases the N axis of the LMN system is along the T axis of the TPN system

== The wave fluctuations are propagating along T (and are vibrating~ along N )
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5) Waves characterization: a little bit of theory

a- Observations : <k // T (and not only // Mp), so k azimuthal
« while Bo ~ stable, with Bo // P

=) Therefore k | Bo

GSE *

=) Thus we have two possible kinds of polarization:

IBB
> >

/ B,
oE
Fast Magnetosound

l

Impossible because B is along N of
TPN, with 8B | Bo
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oB
Shear Alfven

l

This is our case because OB has a large
component ] Bo




b- Hypothesis : < Classical Shear Alfven :  wlk, ~V, <<V,

e (thermal velocity)

» But to heat electrons, we expect a Landau damping with :  wk, ~V,
e well, but we have  V, ~ 100-200 km/s
Ve ~ 2000 km/s (T, ~30¢eV)

=) Nevertheless, as we observe heating, theses waves cannot
be classical Shear Alven waves

KAWS (cf. simulation of Howes et al, 2008, Sahraoui et al 2011)

W Vyk p; B, ~ 6forB~10nT

* Kinetics Alfven waves : R
k” r 'jr:E Te/Ti -~ 1/10
B+ 2+ )

=) True if koo ~ 30-60

E
« If we use Electric field (only available on Thc) : kﬂ = = 22000 km/s =V,
I

=) KAW can heat the electrons
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6) Check our KAW hypothesis

a- computation by Whamp program of the
absorption rate of KAW by Landau damping on
electrons :

e Input : KL 0. ~ 10-100 (k> 1)

« Input : K, 0. ~ 0.05 - 0.15 (k, o, <<1)

» We find solutions of F/F+ with parameters
corresponding to the observed values :

N=4 cm, B ~10nT (B,~6)
T,~36eV, T, ~400eV

=) For K. 0 ~1-10 (ions scale) we find a low

absorption rate (low ion heating)

=) Butfor Ko PO, ~20-100 (electrons scale) we find a high
absorption rate, and thus a possibility of electron heating.
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b- Extra checking on experimental electrons distribution functions

 Whamp results provides also a small E, (E, / EL ~ 10-?) which accelerates
electrons along B DC field

EESA 3D Full 2007-05-20/22:01:19—>22:02:58

» This prediction can be checkedon Ve, ; ! 1o-ae™
electron distributions functions (on 10000 1 | BRI
Thd in the MPCL) where we observe ; ) D10~
Te, > Te 5000 | [32107
T ' £
: 107107,
. s -
=) Increase of Te, confirms e E oL - | —
heating in direction // (&anti //) e iy
> 1.0x107%%
-s000 I 3,2}-{10-”‘%
So we answer the previous questions and _ 1.0x10713
can deduce than : ~10060 1 : § P
i 1
i 10107
* Waves heat the electrons and not the ions D o
* They are KAWs v Para (km/sec)
s
Ve,
11
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)

« \We observe large gradients (VB, VN, VTe)
» Possibility of drift waves
o Literature: Mikhailovskii (1992) :

Dispersion relation of KAWs with gradients
(VN, VTe, VTiet VB)

VN outward
V Te inward

 We solved numerically the Mikhailovskii's
equations to compute real and imaginary
parts of f/f,+ ( into the experimental regions) :

N. :scaleVN/ Ve

ki 0 ~0-100

For I, <-2.5, we get large growth rates,
and therefore such waves can exists in
observed experimental conditions.
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8) CONCLUSIONS

» Strong waves observed in MPCL and adjacent regions could be identified as

« Short Scale Drift Alfven Waves » with a parallel phase velocity kﬂ = i—z =V, >V,
Il

» They can be generated by strong gradients
» They are propagating azimuthally, along the Mp (simplified by a paraboloide),
with a normal magnetic component

» They are damped by electron heating

SSDAW'’s
Ve K << ko Landau damping
A mechanism I -\
for - VN ‘ kip;>>1 ‘ W /./ | e
heating electrons VB k. ~ ky (azimuthal) E finite
Electron heatin
OB 1 Magnetopause ectro N9
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